Publications by authors named "Sudarson S Sinha"

Despite black cubic phase α-CsPbI nanocrystals having an ideal bandgap of 1.73 eV for optoelectronic applications, the phase transition from α-CsPbI to non-perovskite yellow δ-CsPbI phase at room temperature remains a major obstacle for commercial applications. Since γ-CsPbI is thermodynamically stable with a bandgap of 1.

View Article and Find Full Text PDF

The emergence of Alpha, Beta, Gamma, Delta, and Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for several million deaths up to now. Because of the huge amount of vaccine escape mutations in the spike (S) protein for different variants, the design of material for combating SARS-CoV-2 is very important for our society. Herein, we report on the design of a human angiotensin converting enzyme 2 (ACE2) peptide-conjugated plasmonic-magnetic heterostructure, which has the capability for magnetic separation, identification via surface enhanced Raman spectroscopy (SERS), and inhibition of different variant SARS-CoV-2 infections.

View Article and Find Full Text PDF

Measuring the change in reflectivity (Δ) using the traditional pump-probe approach can monitor photoinduced ultrafast dynamics in matter, yet relating these dynamic to physical processes for complex systems is not unique. By applying a simple modification to the classical pump-probe technique, we simultaneously measure both the first and second order of Δ. These additional data impose new constraints on the interpretation of the underlying ultrafast dynamics.

View Article and Find Full Text PDF

Nanotubes of transition metal dichalcogenides such as WS and MoS offer unique quasi-1D properties and numerous potential applications. Replacing sulfur by selenium would yield ternary WSSe (0 ≤ ≤ 1; WSSe) nanotubes, which are expected to reveal strong modulation in their absorption edge as a function of selenium content, . Solid WO oxide nanowhiskers were employed as a sacrificial template to gain a high yield of the nanotubes with a rather uniform size distribution.

View Article and Find Full Text PDF

As per the American Cancer Society, lung cancer is the leading cause of cancer-related death worldwide. Since the accumulation of exosomal programmed cell death ligand 1 (PD-L1) is associated with therapeutic resistance in programmed cell death 1 (PD-1) and PD-L1 immunotherapy, tracking PD-L1-positive (PD-L1 (+)) exosomes is very important for predicting anti-PD-1 and anti-PD-L1 therapy for lung cancer. Herein, we report the design of an anti-PD-L1 monoclonal antibody-conjugated magnetic-nanoparticle-attached yellow fluorescent carbon dot (YFCD) based magnetic-fluorescence nanoarchitecture for the selective separation and accurate identification of PD-L1-expressing exosomes.

View Article and Find Full Text PDF

We present the analysis of a family of nanotubes (NTs) based on the quaternary misfit layered compound (MLC) YLaS-TaS. The NTs were successfully synthesized within the whole range of possible compositions the chemical vapor transport technique. In-depth analysis of the NTs using electron microscopy and spectroscopy proves the in-phase (partial) substitution of La by Y in the (La,Y)S subsystem and reveals structural changes compared to the previously reported LaS-TaS MLC-NTs.

View Article and Find Full Text PDF

Multiwall WS nanotubes (and fullerene-like nanoparticles thereof) are currently synthesized in large amounts, reproducibly. Other than showing interesting mechanical and tribological properties, which offer them a myriad of applications, they are recently shown to exhibit remarkable optical and electrical properties, including quasi-1D superconductivity, electroluminescence, and a strong bulk photovoltaic effect. Here, it is shown that, using a simple dispersion-fractionation technique, one can control the diameter of the nanotubes and move from pure excitonic to polaritonic features.

View Article and Find Full Text PDF

Since the usage of hair dyes has increased in recent time, the removal of residual dye from environment is also an emerging issue. Hair dye contains mixture of chemicals including genotoxic chemical, p-phenylenediamine (p-PD or PPD). The present study reports bioremediation of hair dye using bacteria isolated from saloon effluent.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) fingerprinting is highly promising for identifying disease markers from complex mixtures of clinical sample, which has the capability to take medical diagnoses to the next level. Although vibrational frequency in Raman spectra is unique for each biomolecule, which can be used as fingerprint identification, it has not been considered to be used routinely for biosensing due to the fact that the Raman signal is very weak. Contemporary SERS has been demonstrated to be an excellent analytical tool for practical label-free sensing applications due its ability to enhance Raman signals by factors of up to 10-10 orders of magnitude.

View Article and Find Full Text PDF

Drug resistant superbug infection is one of the foremost threats to human health. Plasmonic nanoparticles can be used for ultrasensitive bio-imaging and photothermal killing by amplification of electromagnetic fields at nanoscale "hot spots". One of the main challenges to plasmonic imaging and photothermal killing is design of a plasmonic substrate with a large number of "hot spots".

View Article and Find Full Text PDF

Dengue virus (DENV) and West Nile virus (WNV) are two well-documented mosquito-borne flaviviruses that cause significant health problems worldwide. Driven by this need, we have developed a bio-conjugated gold nanoparticle (AuNP)-based surface enhanced Raman spectroscopy (SERS) probe for the detection of both DENV and WNV. Reported data demonstrate anti-flavivirus 4G2 antibody conjugated gold nanoparticle (GNP) SERS probe can be used as a Raman fingerprint for the ultrasensitive detection of DENV and WNV selectively.

View Article and Find Full Text PDF

A combination of silver nanoparticles (AgNPs) and an antibiotic can synergistically inhibit bacterial growth, especially against the drug-resistant bacteria Salmonella typhimurium. However, the mechanism for the synergistic activity is not known. This study chooses four classes of antibiotics, β-lactam (ampicillin and penicillin), quinolone (enoxacin), aminoglycoside (kanamycin and neomycin), and polykeptide (tetracycline) to explore their synergistic mechanism when combined with AgNPs against the multidrug-resistant bacterium Salmonella typhimurium DT 104.

View Article and Find Full Text PDF

Tumor heterogeneity is one of the biggest challenges in cancer treatment and diagnosis. A multicolor optical ruler is essential to address the heterogeneous tumor cell complexity. Driven by this need, the current article reports the design of a multicolor long range nanoscopic ruler for screening tumor heterogeneity by accurately identifying epithelial cells and cancer stem cells (CSCs) simultaneously.

View Article and Find Full Text PDF

Circulating tumor cells (CTC) are highly heterogeneous in nature due to epithelial-mesenchymal transition (EMT), which is the major obstacle for CTC analysis via "liquid biopsy". This article reports the development of a new class of multifunctional fluorescent-magnetic multicolor nanoprobes for targeted capturing and accurate identification of heterogeneous CTC. A facile design approach for the synthesis and characterization of bioconjugated multifunctonal nanoprobes that exhibit excellent magnetic properties and emit very bright and photostable multicolor fluorescence at red, green, and blue under 380 nm excitation is reported.

View Article and Find Full Text PDF

Multiphoton excitation microscopy techniques are the emerging nonlinear optical (NLO) imaging methods to watch the biological world due its ability to penetrate deep into living tissues. Driven by the need to develop multimodal NLO imaging probe, current article reports the design of DNA-mediated gold nanoprisms assembly based optical antennas to enhance multiphoton imaging capability in biological II window. Reported experimental data show a unique way to enhance second harmonic generation (SHG) and two-photon fluorescence (TPF) properties by several orders of magnitudes via plasmon coupled organization into gold nanoprism assembly structures.

View Article and Find Full Text PDF

Pharmaceuticals and personal care products (PPCPs) are among the most important emerging environmental contaminants in recent time. PPCPs include wide range of cosmetics, among which hair dyes, are immensely popular in modern society. However, impact of hair dye and its residual discharged to the environment in relation to human health and ecological imbalance have not been widely studied.

View Article and Find Full Text PDF

Despite advances in the medical field, even in the 21st century cancer is one of the leading causes of death for men and women in the world. Since the second near-infrared (NIR) biological window light between 950 and 1350 nm offers highly efficient tissue penetration, the current article reports the development of hybrid theranostic platform using anti-GD2 antibody attached gold nanoparticle (GNP) conjugated, single-wall carbon nanotube (SWCNT) for second near-IR light triggered selective imaging and efficient photothermal therapy of human melanoma cancer cell. Reported results demonstrate that due to strong plasmon-coupling, two-photon luminescence (TPL) intensity from theranostic GNP attached SWCNT materials is 6 orders of magnitude higher than GNP or SWCNT alone.

View Article and Find Full Text PDF

According to the World Health Organization (WHO), multiple drug-resistant (MDR) bacterial infection is a top threat to human health. Since bacteria evolve to resist antibiotics faster than scientists can develop new classes of drugs, the development of new materials which can be used, not only for separation, but also for effective disinfection of drug resistant pathogens is urgent. Driven by this need, we report for the first time the development of a nisin antimicrobial peptide conjugated, three dimensional (3D) porous graphene oxide membrane for identification, effective separation, and complete disinfection of MDR methicillin-resistant (MRSA) pathogens from water.

View Article and Find Full Text PDF

According to the World Health Organization, even in the 21st century, more than one million children die each year due to the rotavirus contamination of drinking water. Therefore, accurate identification and removal of rotavirus are very important to save childrens' lives. Driven by the need, in this Letter, we report for the first time highly selective identification and removal of rotavirus from infected water using a bioconjugated hybrid graphene oxide based three-dimensional (3D) solid architecture.

View Article and Find Full Text PDF

More than a billion people lack access to safe drinking water that is free from pathogenic bacteria and toxic metals. The World Health Organization estimates several million people, mostly children, die every year due to the lack of good quality water. Driven by this need, we report the development of PGLa antimicrobial peptide and glutathione conjugated carbon nanotube (CNT) bridged three-dimensional (3D) porous graphene oxide membrane, which can be used for highly efficient disinfection of Escherichia coli O157:H7 bacteria and removal of As(III), As(V), and Pb(II) from water.

View Article and Find Full Text PDF

Despite intense efforts, Alzheimer's disease (AD) is one of the top public health crisis for society even at 21st century. Since presently there is no cure for AD, early diagnosis of possible AD biomarkers is crucial for the society. Driven by the need, the current manuscript reports the development of magnetic core-plasmonic shell nanoparticle attached hybrid graphene oxide based multifunctional nanoplatform which has the capability for highly selective separation of AD biomarkers from whole blood sample, followed by label-free surface enhanced Raman spectroscopy (SERS) identification in femto gram level.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood.

View Article and Find Full Text PDF

Optical rulers have served as a key tool for scientists from different disciplines to address a wide range of biological activity. Since the optical window of state of the art FRET rulers is limited to a 10 nm distance, developing long range optical rulers is very important to monitor real life biological processes. Driven by this need, the current manuscript reports for the first time the design of long-range two-photon scattering (TPS) spectroscopy rulers using gold nano-antenna separated by a bifunctional rigid double strand DNA molecule, which controls the spectroscopy ruler length.

View Article and Find Full Text PDF

Tumor metastasis is responsible for 1 in 4 deaths in the United States. Though it has been well-documented over past two decades that circulating tumor cells (CTCs) in blood can be used as a biomarker for metastatic cancer, there are enormous challenges in capturing and identifying CTCs with sufficient sensitivity and specificity. Because of the heterogeneous expression of CTC markers, it is now well understood that a single CTC marker is insufficient to capture all CTCs from the blood.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: