Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of lymphoma, and accurate survival prediction is crucial for treatment decisions. This study aims to develop a robust survival prediction strategy to integrate various risk factors effectively, including clinical risk factors and Deauville scores in positron-emission tomography/computed tomography at different treatment stages using a deep-learning-based approach. We conduct a multi-institutional study on 604 DLBCL patients' clinical data and validate the model on 220 patients from an independent institution.
View Article and Find Full Text PDFCombating mental illnesses such as depression and anxiety has become a global concern. As a result of the necessity for finding effective ways to battle these problems, machine learning approaches have been included in healthcare systems for the diagnosis and probable prediction of the treatment outcomes of mental health conditions. With the growing interest in machine and deep learning methods, analysis of existing work to guide future research directions is necessary.
View Article and Find Full Text PDFIf left untreated, Alzheimer's disease (AD) is a leading cause of slowly progressive dementia. Therefore, it is critical to detect AD to prevent its progression. In this study, we propose a bidirectional progressive recurrent network with imputation (BiPro) that uses longitudinal data, including patient demographics and biomarkers of magnetic resonance imaging (MRI), to forecast clinical diagnoses and phenotypic measurements at multiple timepoints.
View Article and Find Full Text PDF