Publications by authors named "Sudarat Yadnum"

The development of novel catalysts based on metal clusters requires a rational design principle as well as atomically precise synthetic methods. Toward this goal, we have developed a method to precisely and independently control the size, composition, and surface modification of heterogeneous gold clusters by calcination of the ligand-protected Au clusters on carbon supports. We studied the effects of these structural parameters using benzyl alcohol oxidation as a test reaction.

View Article and Find Full Text PDF

Herein, bipolar electrochemistry is applied in a straightforward way to the site-selective in situ synthesis of metal-organic framework (MOF) structures, which have attracted tremendous interest in recent years because of their significant application potential, ranging from sensing to gas storage and catalysis. The novelty of the presented work is that the deposit can be intentionally confined to a defined area of a substrate without using masks or templates. The intrinsic site-selectivity of bipolar electrochemistry makes it a method of choice to generate, in a highly controlled way, hybrid particles that may have different functionalities combined on the same particle.

View Article and Find Full Text PDF

Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method.

View Article and Find Full Text PDF

The density functional theory (DFT) model ONIOM(M06L/6-311++G(2df,2p):UFF was employed to reveal the catalytic activity of Cu(II) in the paddle-wheel unit of the metal-organic framework (MOF)-505 material in the Mukaiyama aldol reaction compared with the activity of Cu-ZSM-5 zeolites. The aldol reaction between a silyl enol ether and formaldehyde catalyzed by the Lewis acidic site of both materials takes place through a concerted pathway, in which the formation of the CC bond and the transfer of the silyl group occurs in a single step. MOF-505 and Cu-ZSM-5 are predicted to be efficient catalysts for this reaction as they strongly activate the formaldehyde carbonyl carbon electrophile, which leads to a considerably lower reaction barrier compared with the gas-phase system.

View Article and Find Full Text PDF