Promoters are important in catalysis, but the atomistic details of their function and particularly their role in reaction instabilities such as kinetic phase transitions and oscillations are often unknown. Employing hydrogen oxidation as probe reaction, a Rh nanotip for mimicking a single Rh nanoparticle and field electron microscopy for in situ monitoring, we demonstrate a La-mediated local catalytic effect. The oscillatory mode of the reaction provides a tool for studying the interplay between different types of reaction pacemakers, i.
View Article and Find Full Text PDFIn compartmentalized systems, chemical reactions may proceed in differing ways even in adjacent compartments. In compartmentalized nanosystems, the reaction behaviour may deviate from that observed on the macro- or mesoscale. In situ studies of processes in such nanosystems meet severe experimental challenges, often leaving the field to theoretical simulations.
View Article and Find Full Text PDFThe kinetic behavior of individual Rh() nanofacets coupled in a common reaction system was studied using the apex of a curved rhodium microcrystal (radius of 0.65 μm) as a model of a single catalytic particle and field electron microscopy for in situ imaging of catalytic hydrogen oxidation. Depending on the extent of interfacet coupling via hydrogen diffusion, different oscillating reaction modes were observed including highly unusual multifrequential oscillations: differently oriented nanofacets oscillated with differing frequencies despite their immediate neighborhood.
View Article and Find Full Text PDFSpatio-temporal nonuniformities in H oxidation on individual Rh( ) domains of a polycrystalline Rh foil were studied in the 10 mbar pressure range by photoemission electron microscopy (PEEM), X-ray photoemission electron microscopy (XPEEM), and low-energy electron microscopy (LEEM). The latter two were used for in situ correlative microscopy to zoom in with significantly higher lateral resolution, allowing detection of an unusual island-mediated oxygen front propagation during kinetic transitions. The origin of the island-mediated front propagation was rationalized by model calculations based on a hybrid approach of microkinetic modeling and Monte Carlo simulations.
View Article and Find Full Text PDFCatalytic hydrogen oxidation on a polycrystalline rhodium foil used as a surface structure library is studied by scanning photoelectron microscopy (SPEM) in the 10 mbar pressure range, yielding spatially resolved X-ray photoemission spectroscopy (XPS) measurements. Here we report an observation of a previously unknown coexistence of four different states on adjacent differently oriented domains of the same Rh sample at the exactly same conditions. A catalytically active steady state, a catalytically inactive steady state and multifrequential oscillating states are simultaneously observed.
View Article and Find Full Text PDFSelf-sustained oscillations in H oxidation on a Rh nanotip mimicking a single catalytic nanoparticle were studied by field emission microscopy (FEM). The observed spatio-temporal oscillations result from the coupling of subsurface oxide formation/depletion with reaction front propagation. An original sophisticated method for tracking kinetic transition points allowed the identification of local pacemakers, initiating kinetic transitions and the nucleation of reaction fronts, with much higher temporal resolution than conventional processing of FEM video files provides.
View Article and Find Full Text PDFIn heterogeneous catalysis research, the reactivity of individual nanofacets of single particles is typically not resolved. We applied in situ field electron microscopy to the apex of a curved rhodium crystal (radius of 650 nanometers), providing high spatial (~2 nanometers) and time resolution (~2 milliseconds) of oscillatory catalytic hydrogen oxidation, to image adsorbed species and reaction fronts on the individual facets. Using ionized water as the imaging species, the active sites were directly imaged with field ion microscopy.
View Article and Find Full Text PDFScanning photoelectron microscopy (SPEM) and photoemission electron microscopy (PEEM) allow local surface analysis and visualising ongoing reactions on a µm-scale. These two spatio-temporal imaging methods are applied to polycrystalline Rh, representing a library of well-defined high-Miller-index surface structures. The combination of these techniques enables revealing the anisotropy of surface oxidation, as well as its effect on catalytic hydrogen oxidation.
View Article and Find Full Text PDFA novel sample temperature control system for field ion microscopy (FIM), field electron microscopy (FEM), and atom probe techniques based on wireless data transmission was designed, built, and applied for FIM and FEM studies of surface reactions. The system solves the longstanding problem of the temperature control of micrometer- to nanometer-sized samples during the operation in field emission based techniques. The new system can also be used for other applications requiring the specimen to be under high electric potential (tens of kilovolts or even higher).
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
February 2019
Multifrequential oscillating spatiotemporal patterns in the catalytic hydrogen oxidation on rhodium have been observed in situ in the 10 mbar pressure range using photoemission electron microscopy. The effect is manifested by periodic chemical waves, which travel over the polycrystalline Rh surface and change their oscillation frequency while crossing boundaries between different Rh() domains. Each crystallographically specific μm-sized Rh() domain exhibits an individual wave pattern and oscillation frequency, despite the global diffusional coupling of the surface reaction, altogether creating a structure library.
View Article and Find Full Text PDFIt is well documented that different surface structures of catalytically active metals may exhibit different catalytic properties. This is typically examined by comparing the catalytic activities and/or selectivities of various well-defined smooth and stepped/kinked single crystal surfaces. Here we report the direct observation of the heterogeneity of active polycrystalline surfaces under reaction conditions, which is manifested by multifrequential oscillations during hydrogen oxidation over rhodium, imaged in situ by photoemission electron microscopy.
View Article and Find Full Text PDFAdsorption (Boston)
October 2016
Combining an energy analyzer with a field ion microscope equipped with a probe-hole which corresponds to just few atomic surface sites, spatially resolved energy analysis of ions field desorbed from the adsorbent surface is possible on a nm-scale. The experimentally measured values of the kinetic energy of field ions can be related (by means of a thermionic cycle) to the physically meaningful binding energy of corresponding adsorbed species. The development of the technique into a full serviceable micro-spectroscopy on a nanoscale allowed recent detection of the weakly adsorbed CO species on Pt(111) which are largely analogous to those adsorbed at high pressures and provided first results for the binding energy of Li adatoms in a coadsorption system, namely Li-O-W(112) for various lithium and oxygen coverages.
View Article and Find Full Text PDFIn the present contribution we present an overview of our recent studies using the "kinetics by imaging" approach for CO oxidation on heterogeneous model systems. The method is based on the correlation of the PEEM image intensity with catalytic activity: scaled down to the μm-sized surface regions, such correlation allows simultaneous local kinetic measurements on differently oriented individual domains of a polycrystalline metal-foil, including the construction of local kinetic phase diagrams. This allows spatially- and component-resolved kinetic studies and, e.
View Article and Find Full Text PDFAbstract: The catalytic H oxidation reaction on stepped Rh surfaces in the 10 mbar pressure range was studied in situ on individual high-Miller-index domains of a polycrystalline Rh foil by PEEM (photoemission electron microscopy) and on a Rh nanotip by FIM/FEM (field-ion/field-emission microscopy). The activity, particularly the tolerance to poisoning by oxygen, was found to strongly depend on the density of steps and defects, as well as on the size of the catalytically active surfaces.
View Article and Find Full Text PDFUltramicroscopy
December 2015
Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10(-5) mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition.
View Article and Find Full Text PDFAn improved methodology of the Zr specimen preparation was developed which allows fabrication of stable Zr nanotips suitable for FIM and AP applications. Initial oxidation of the Zr surface was studied on a Zr nanotip by FIM and on a polycrystalline Zr foil by XPS, both at low oxygen pressure (10(-8)-10(-7)mbar). The XPS data reveal that in a first, fast stage of oxidation, a Zr suboxide interlayer is formed which contains three suboxide components (Zr(+1), Zr(+2) and Zr(+3)) and is located between the Zr surface and a stoichiometric ZrO2 overlayer that grows in a second, slow oxidation stage.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
June 2013
The role of artificially created defects and steps in the local reaction kinetics of CO oxidation on the individual domains of a polycrystalline Pd foil was studied by photoemission electron microscopy (PEEM), mass spectroscopy (MS), and scanning tunneling microscopy (STM). The defects and steps were created by STM-controlled Ar sputtering and the novel PEEM-based approach allowed the simultaneous determination of local kinetic phase transitions on differently oriented μm-sized grains of a polycrystalline sample. The independent (single-crystal-like) reaction behavior of the individual Pd() domains in the 10 mbar pressure range changes upon Ar sputtering to a correlated reaction behavior, and the reaction fronts propagate unhindered across the grain boundaries.
View Article and Find Full Text PDFAbstract: The effect of silicon oxide surface segregation on the locally-resolved kinetics of the CO oxidation reaction on individual grains of a polycrystalline Pd foil was studied in situ by PEEM, MS and XPS. The silicon oxide formation induced by Si-impurity segregation at oxidizing conditions, was monitored by XPS and its impact on the global and local (spatially resolved) kinetics of the CO oxidation was determined by MS and PEEM. The results reveal a drastic inhibiting effect of silicon oxide on the Pd reactivity towards CO oxidation, manifested both in the collapse of the global CO formation rate and in the modified local reactive properties of individual Pd micrograins.
View Article and Find Full Text PDF: Photoemission electron microscopy, DFT, and microkinetic modeling were used to examine the local kinetics in the CO oxidation on individual grains of a polycrystalline sample. It is demonstrated that catalytic ignition (“light-off”) occurs easier on Pd() domains than on corresponding Pt() domains. The isothermal determination of kinetic transitions, commonly used in surface science, is fully consistent with the isobaric reactivity monitoring applied in technical catalysis.
View Article and Find Full Text PDFThe locally-resolved reaction kinetics of CO oxidation on individual (100)-type grains of a polycrystalline Pt foil was monitored in situ using photoemission electron microscopy (PEEM). Reaction-induced surface morphology changes were studied by optical differential interference contrast microscopy and atomic force microscopy (AFM). Regions of high catalytic activity, low activity and bistability in a (p,T)-parameter space were determined, allowing to establish a local kinetic phase diagram for CO oxidation on (100) facets of Pt foil.
View Article and Find Full Text PDFCoadsorption of lithium and oxygen on a nanosized W-tip is studied using field ion appearance energy spectroscopy (FIAES). Binding energies of coadsorbed Li-adatoms are derived locally for chosen atomic sites on (1 1 2) facets for different oxygen and Li-coverages. Independently, the binding energies of Li-adatoms in coadsorbed Li/oxygen layers are determined for macroscopic W(1 1 2) single crystal samples from the adsorption isobars in adsorption-desorption equilibrium experiments and compared with the local nm-scale measurements.
View Article and Find Full Text PDF