Increasing contamination in potable water supplies necessitates the development of sensing methods that provide the speed and selectivity necessary for safety. One promising method relies on recognition and detection at the liquid-liquid interface of dynamic complex emulsions. These all-liquid materials transduce changes in interfacial tensions into optical signals via the coupling of their chemical, physical, and optical properties.
View Article and Find Full Text PDFEmissive complex droplets with reconfigurable morphology and dynamic optical properties offer exciting opportunities as chemical sensors due to their stimuli-responsive characteristics. In this work, we demonstrated a real-time optical sensing platform that combines poly(dimethylsiloxane) (PDMS) microfluidics and complex droplets as sensing materials. We utilized a mechanism, called directional emission, to transduce changes in interfacial tension into optical signals.
View Article and Find Full Text PDFContamination of per- and polyfluoroalkyl substances (PFAS) in water supplies will continue to have serious health and environmental consequences. Despite the importance of monitoring the concentrations of PFAS at potential sites of contamination and at treatment plants, there are few suitable and rapid on-site methods. Many nonconventional techniques do not possess the necessary selectivity and sensitivity to distinguish PFAS from other surface-active components and to quantify the low concentrations in real-world conditions.
View Article and Find Full Text PDFSepsis is a major cause of mortality among hospitalized patients worldwide. Rapid diagnosis is critical as early treatments have been demonstrated to improve survival. Despite the importance of early detection, current technologies and clinical methods are often insufficient due to their lack of the necessary speed, selectivity, or sensitivity.
View Article and Find Full Text PDFHere we report a sensing method for based on the agglutination of all-liquid Janus emulsions. This two-dye assay enables the rapid detection of trace in less than 2 h via an emissive signal produced in response to binding. The biorecognition interface between the Janus emulsions is assembled by attaching antibodies to a functional surfactant polymer with a tetrazine/transcyclooctene click reaction.
View Article and Find Full Text PDFWe report a new type of potentiometric pH sensor with sensitivity exceeding the theoretical Nernstian behavior (-59.1 mV/pH). For the pH-sensitive electrode, 1D tungsten oxide (WO) nanofibers (NFs) were prepared to obtain large surface area and high porosity.
View Article and Find Full Text PDFSuccessful identification of complex odors by sensor arrays remains a challenging problem. Herein, we report robust, category-specific multiclass-time series classification using an array of 20 carbon nanotube-based chemical sensors. We differentiate between samples of cheese, liquor, and edible oil based on their odor.
View Article and Find Full Text PDFReliable early-stage detection of foodborne pathogens is a global public health challenge that requires new and improved sensing strategies. Here, we demonstrate that dynamically reconfigurable fluorescent double emulsions can function as highly responsive optical sensors for the rapid detection of carbohydrates fructose, glucose, mannose, and mannan, which are involved in many biological and pathogenic phenomena. The proposed detection strategy relies on reversible reactions between boronic acid surfactants and carbohydrates at the hydrocarbon/water interface leading to a dynamic reconfiguration of the droplet morphology, which alters the angular distribution of the droplet's fluorescent light emission.
View Article and Find Full Text PDFOrthogonal functionalization of 2D materials by selective assembly at interfaces provides opportunities to create new materials with transformative properties. Challenges remain in realizing controllable, scalable surface-selective, and orthogonal functionalization. Herein, dynamic covalent assembly is reported that directs the functionalization of graphene surfaces at liquid-liquid interfaces.
View Article and Find Full Text PDFThis paper describes the synthesis and characterization of a class of highly stretchable and degradable semiconducting polymers. These materials are multi-block copolymers (BCPs) in which the semiconducting blocks are based on the diketopyrrolopyrrole (DPP) unit flanked by furan rings and the insulating blocks are poly(ε-caprolactone) (PCL). The combination of stiff conjugated segments with flexible aliphatic polyesters produces materials that can be stretched >100%.
View Article and Find Full Text PDFWe report on a new modular sensing approach in which complex emulsions serve as efficient transducers in optical evanescent field-based sensing devices. Specifically, we leverage the tunable refractive index upon chemically triggered changes in droplet morphology or orientation. Variations in the optical coupling result in readily detectable changes in the light transmitted from a waveguide.
View Article and Find Full Text PDFThis paper describes effects of the flexibility, length, and branching of side chains on the mechanical properties of low-bandgap semiconducting polymers. The backbones of the polymer chains comprise a diketopyrrolopyrrole (DPP) motif flanked by two furan rings and copolymerized by Stille polycondensation with thiophene (DPP2FT). The side chains of the DPP fall into three categories: linear alkyl (C8, C14, or C16), branched alkyl (ethylhexyl, EH, or hexyldecyl, HD), and linear oligo(ethylene oxide) (EO3, EO4, or EO5).
View Article and Find Full Text PDFComplex liquid colloids hold great promise as transducers in sensing applications as a result of their tunable morphology and intrinsic optical properties. Herein, we introduce meta-amino substituted green fluorescence protein chromophore (GFPc) surfactants that localize at the organic-water interface of complex multiphase liquid colloids. The meta-amino GFPc exhibits hydrogen-bonding (HB) mediated fluorescence quenching, and are nearly nonemissive in the presence of protic solvents.
View Article and Find Full Text PDFJ Polym Sci A Polym Chem
June 2018
A modular facile route has been developed to synthesize functionalized 2,5-di(thiophen-2-yl)-1-H-arylpyrroles from readily available starting materials. These units are compatible with various polymerization conditions and are versatile building blocks for conjugated polymers. The polymers show high thermal stability and solubility in a number of solvents.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) promise to advance a number of real-world technologies. Of these applications, they are particularly attractive for uses in chemical sensors for environmental and health monitoring. However, chemical sensors based on CNTs are often lacking in selectivity, and the elucidation of their sensing mechanisms remains challenging.
View Article and Find Full Text PDFMaterials with magneto-optic (MO) properties have enabled critical fiber-optic applications and highly sensitive magnetic field sensors. While traditional MO materials are inorganic in nature, new generations of MO materials based on organic semiconducting polymers could allow increased versatility for device architectures, manufacturing options, and flexible mechanics. However, the origin of MO activity in semiconducting polymers is far from understood.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2017
Carbon monoxide (CO) outcompetes oxygen when binding to the iron center of hemeproteins, leading to a reduction in blood oxygen level and acute poisoning. Harvesting the strong specific interaction between CO and the iron porphyrin provides a highly selective and customizable sensor. We report the development of chemiresistive sensors with voltage-activated sensitivity for the detection of CO comprising iron porphyrin and functionalized single-walled carbon nanotubes (F-SWCNTs).
View Article and Find Full Text PDFJanus emulsion assays that rely on carbohydrate-lectin binding for the detection of bacteria are described. Surfactants containing mannose are self-assembled at the surface of Janus droplets to produce particles with lectin binding sites. Janus droplets orient in a vertical direction as a result of the difference in densities between the hydrocarbon and fluorocarbon solvents.
View Article and Find Full Text PDFMechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2017
Complex emulsions, including Janus droplets, are becoming increasingly important in pharmaceuticals and medical diagnostics, the fabrication of microcapsules for drug delivery, chemical sensing, E-paper display technologies, and optics. Because fluid Janus droplets are often sensitive to external perturbation, such as unexpected changes in the concentration of the surfactants or surface-active biomolecules in the environment, stabilizing their morphology is critical for many real-world applications. To endow Janus droplets with resistance to external chemical perturbations, we demonstrate a general and robust method of creating polymeric hemispherical shells via interfacial free-radical polymerization on the Janus droplets.
View Article and Find Full Text PDFMacromol Rapid Commun
October 2016
Increasing the flexibility of polymer chains is a common method of increasing the deformability of solid polymeric materials. Here, the effects of "conjugation-break spacers" (CBSs)-aliphatic units that interrupt the sp -hybridized backbone of semiconducting polymers-on the mechanical and photovoltaic properties of a diketopyrrolopyrrole-based polymer are described. Unexpectedly, the tensile moduli and cracking behavior of a series of polymers with repeat units bearing 0%, 30%, 50%, 70%, and 100% of the CBS are not directly related to the percent incorporation of the flexible unit.
View Article and Find Full Text PDFAdvantages of semiconducting small molecules-as opposed to semiconducting polymers-include synthetic simplicity, monodispersity, low cost, and ease of purification. One purported disadvantage of small-molecule films is reduced mechanical robustness. This paper measures the tensile modulus and crack-onset strain for pure films of the high-performance solution-processable small-molecule donors 7,7'-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl]bis[6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole] (DTS(FBTTh2)2), 2,5-di(2-ethylhexyl)-3,6-bis(5″-n-hexyl-[2,2',5',2″]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), and 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), the acceptor 5,5'-(2,1,3-benzothiadiazole-4,7-diyldi-2,1-ethenediyl)bis[2-hexyl-1H-isoindole-1,3(2H)-dione] (HPI-BT), blends of DTS(FBTTh2)2 and SMDPPEH with [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) and with HPI-BT, and bulk heterojunction films processed with the additives 1,8-diiodooctane (DIO) and polystyrene (PS).
View Article and Find Full Text PDFMechanical buckling of thin films on elastomeric substrates is often used to determine the mechanical properties of polymers whose scarcity precludes obtaining a stress-strain curve. Although the modulus and crack-onset strain can readily be obtained by such film-on-elastomer systems, information critical to the development of flexible, stretchable, and mechanically robust electronics (i.e.
View Article and Find Full Text PDFGraphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 μm) for every 1 g of graphene produced.
View Article and Find Full Text PDF