Free energy perturbation (FEP) methodologies have become commonplace methods for modeling potency in hit-to-lead and lead optimization stages of drug discovery. The conformational states of the initial poses of compounds for FEP+ calculations are often set up by alignment to a cocrystal structure ligand, but it is not clear if this method provides the best result for all proteins or all ligands. Not only are ligand conformational states potential variables in modeling compound potency in FEP but also the selection of crystallographic water molecules for inclusion in the FEP input structures can impact FEP models.
View Article and Find Full Text PDFGlutamate mediates fast excitatory neurotransmission via ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The trafficking and gating properties of AMPA receptors (AMPARs) can be amplified by transmembrane AMPAR regulatory proteins (TARPs), which are often expressed in localized brain regions. Herein, we describe the discovery, lead optimization, and preclinical characterization of 5-arylbenzimidazolone and oxindole-based negative modulators of AMPARs associated with TARP γ-8, the primary TARP found in hippocampus.
View Article and Find Full Text PDFMembers of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) subtype of ionotropic glutamate receptors mediate the majority of fast synaptic transmission within the mammalian brain and spinal cord, representing attractive targets for therapeutic intervention. Here, we describe novel AMPA receptor modulators that require the presence of the accessory protein CACNG8, also known as transmembrane AMPA receptor regulatory protein γ8 (TARP-γ8). Using calcium flux, radioligand binding, and electrophysiological assays of wild-type and mutant forms of TARP-γ8, we demonstrate that these compounds possess a novel mechanism of action consistent with a partial disruption of the interaction between the TARP and the pore-forming subunit of the channel.
View Article and Find Full Text PDFThe synthesis, SAR, and preclinical characterization of a series of substituted 6,7-dihydro[1,2,4]triazolo[4,3]pyrazin-8(5H)-one P2X7 receptor antagonists are described. Optimized leads from this series comprise some of the most potent human P2X7R antagonists reported to date (IC50s<1nM). They also exhibit sufficient potency and oral bioavailability in rat to enable extensive in vivo profiling.
View Article and Find Full Text PDFStructure-activity relationship analysis in a series of 3-(5-((2-oxoindolin-3-ylidene)methyl)furan-2-yl)amides identified compound 13, a pan-Pim kinases inhibitor with excellent biochemical potency and kinase selectivity. Compound 13 exhibited in vitro synergy with chemotherapeutics and robust in vivo efficacy in two Pim kinases driven tumor models.
View Article and Find Full Text PDFUtilizing the structure-activity relationship we have developed during the synthesis of the first two generations and mechanism of action studies that point to the interaction of these molecules with the key oncogenic protein Hsp90, we report here the design of 32 new Sansalvamide A derivatives and their synthesis. Our new structures, designed from previously reported potent compounds, were tested for cytotoxicity on the HCT116 colon cancer cell line, and their binding to the biological target was analyzed using computational studies involving blind docking of derivatives using Autodock. Further, we show new evidence that our molecules bind directly to Hsp90 and modulate Hsp90's binding with client proteins.
View Article and Find Full Text PDFWe outline the synthesis of six novel derivatives that are based on a recently discovered HDAC inhibitor FR235222. Our work is the first report utilizing a novel binding element, guanidine, as metal coordinators in HDAC inhibitors. Further, we demonstrate that these compounds show cytotoxicity that parallels their ability to inhibit deacetylase activity, and that the most potent compounds maintain an L-Phe at position 1, and a D-Pro at position 4.
View Article and Find Full Text PDFWe report the synthesis of 34 second-generation Sansalvamide A derivatives. San A derivatives have unique anticancer properties and target multiple cancers, including colon, pancreatic, breast, prostate, and melanoma. As novel templates, the derivatives described herein explore the role of stereochemistry, amide bond geometry, transannular hydrogen bonding, and polarity on antitumor potency.
View Article and Find Full Text PDF