Publications by authors named "Suchitra Mohanty"

Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia/lymphoma (ATLL) and the neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax oncoprotein regulates viral gene expression and persistently activates NF-κB to maintain the viability of HTLV-1-infected T cells. Here, we utilize a kinome-wide shRNA screen to identify the tyrosine kinase KDR as an essential survival factor of HTLV-1-transformed cells.

View Article and Find Full Text PDF

Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10-20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections.

View Article and Find Full Text PDF

Background: Primary effusion lymphoma (PEL) is an aggressive form of non-Hodgkin lymphoma of B cells caused by Kaposi's Sarcoma-associated Herpes Virus (KSHV). KSHV encoded latent and lytic antigens promote oncogenic transformation and evade apoptosis through the modulation of various host cellular signaling pathways. Nm23-H1 is a known metastatic suppressor whose expression inversely correlates with the metastatic potential of different cancers.

View Article and Find Full Text PDF

Cervical cancer is the fourth most prevalent cancer in women worldwide, predominantly infected with human papillomavirus (HPV). The current chemo and radiotherapies are mostly futile due to acquired resistance to apoptosis and warrant new therapeutic approaches targeting potent non-apoptotic cell death pathways to eliminate cervical cancer cells. Induction of necroptosis by pharmaceutical interventions is emerging as a promising tool in multiple apoptotic resistant cancer cells.

View Article and Find Full Text PDF

Non-thermal plasma (NTP) technology is regarded as promising method for abatement of volatile organic compounds (VOCs) and has gained substantial interests in the fields of air purification. In this present work at atmospheric pressure, dielectric barrier discharge (DBD) plasma has been employed and utilized to evaluate feasibility of toluene, benzene, and m-xylene degradation in a parallel plate type DBD reactor taking argon as a carrier gas. The composition of post-plasma-treated by-products is studied by various spectroscopic techniques such as GC, GCMS, and FTIR, and the corresponding computational work is carried out by Gaussian software.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), and the neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein persistently activates the NF-κB pathway to enhance the proliferation and survival of HTLV-1 infected T cells. Lysine 63 (K63)-linked polyubiquitination of Tax provides an important regulatory mechanism that promotes Tax-mediated interaction with the IKK complex and activation of NF-κB; however, the host proteins regulating Tax ubiquitination are largely unknown.

View Article and Find Full Text PDF

The human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a neoplasm of CD4+CD25+ T cells that occurs in 2-5% of infected individuals after decades of asymptomatic latent infection. Multiple HTLV-1-encoded regulatory proteins, including Tax and HTLV-1 basic leucine zipper factor (HBZ), play key roles in viral persistence and latency. The HTLV-1 Tax oncoprotein interacts with a plethora of host cellular proteins to regulate viral gene expression and also promote the aberrant activation of signaling pathways such as NF-κB to drive clonal proliferation and survival of T cells bearing the HTLV-1 provirus.

View Article and Find Full Text PDF

Background: Interleukin-28B (IL28B) locus on a human chromosomal region mapped to 19q13 execute immune defense against viruses. During Hepatitis C Virus (HCV) infection the IL28B has a promising role in deciding the consequence of infection for spontaneous clearance of viruses or causing chronic liver infection. Treatment of chronic hepatitis C includes use of direct acting antivirals, Pegylated-Interferon (PEG-IFN) and Ribavirin (RBV) therapy.

View Article and Find Full Text PDF

Kaposi's sarcoma associated herpesvirus (KSHV) a gammaherpesvirus establishes perennial latency in the host with periodic reactivation. Occasionally change in the physiological condition like hypoxia, host cell differentiation can trigger the lytic switch and reactivation of the virus. The biologically active form of 1, 25(OH)2 D3 plays a critical role in the regulation of various physiological processes (e.

View Article and Find Full Text PDF

Kaposi's sarcoma associated herpes virus (KSHV) infected primary effusion lymphoma (PEL) is a rare aggressive form of non-Hodgkin's lymphoma of B cells. KSHV latent and lytic antigens modulate several host cellular signalling pathways especially mammalian target of rapamycin (mTOR), STAT-3 and nuclear factor-kappa B (NF-κB) for rapid tumor progression and immune evasion. Current chemotherapeutic strategies are becoming ineffective as they kill only dividing cells and inefficient to target molecular pathways crucial for active virus replication and its survival.

View Article and Find Full Text PDF

The follicular helper T (Tfh) cells help is critical for activation of B cells, antibody class switching, and germinal center (GC) formation. The Tfh cells are characterized by the expression of CXC chemokine receptor 5 (CXCR5), ICOS, programed death 1 (PD-1), B cell lymphoma 6 (BCL-6), and IL-21. They are involved in clearing infections and are adversely linked with autoimmune diseases and also have a role in viral replication as well as clearance.

View Article and Find Full Text PDF

The Kaposi's sarcoma-associated herpesvirus infects the human population and maintains latency stage of viral life cycle in a variety of cell types including cells of epithelial, mesenchymal and endothelial origin. The establishment of latent infection by KSHV requires the expression of an unique repertoire of genes among which latency associated nuclear antigen (LANA) plays a critical role in the replication of the viral genome. LANA regulates the transcription of a number of viral and cellular genes essential for the survival of the virus in the host cell.

View Article and Find Full Text PDF

The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein-Barr virus (EBV).

View Article and Find Full Text PDF

The small molecule Quinacrine (QC, a derivative of 9-aminoacridine), an anti-malaria drug, displays activity against cancer cell lines and can simultaneously suppress nuclear factor-κB (NF-κB) and activate p53 signaling. In this study, we investigated the anticancer mechanism underlying these drug activities in breast cancer cell lines. QC caused a dose-dependent decrease of both anchorage dependent and independent growth of breast cancer cells (MCF-7 and MDA-MB-231) without affecting normal breast epithelial cells (MCF-10A), as evident from clonogenic cell survival, [3-(4,5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide] viability, wound healing and soft agar growth.

View Article and Find Full Text PDF

Nm23-H1 is a well-known tumor metastasis suppressor, which functions as a nucleoside-diphosphate kinase converting nucleoside diphosphates to nucleoside triphosphates with an expense of ATP. It regulates a variety of cellular activities, including proliferation, development, migration and differentiation known to be modulated by a series of complex signaling pathway. Few studies have addressed the mechanistic action of Nm23-H1 in the context of these cellular processes.

View Article and Find Full Text PDF