Functional magnetic resonance imaging (fMRI) is a powerful, noninvasive tool that has significantly contributed to the understanding of the human brain. FMRI data provide a sequence of whole-brain volumes over time and hence are inherently four dimensional (4D). Missing data in fMRI experiments arise from image acquisition limits, susceptibility and motion artifacts or during confounding noise removal.
View Article and Find Full Text PDFBackground: Data-driven methods such as independent component analysis (ICA) makes very few assumptions on the data and the relationships of multiple datasets, and hence, are attractive for the fusion of medical imaging data. Two important extensions of ICA for multiset fusion are the joint ICA (jICA) and the multiset canonical correlation analysis and joint ICA (MCCA-jICA) techniques. Both approaches assume identical mixing matrices, emphasizing components that are common across the multiple datasets.
View Article and Find Full Text PDFIn this work, we propose the novel use of adaptively constrained independent vector analysis (acIVA) to effectively capture the temporal and spatial properties of dynamic blood-oxygen-level-dependent (BOLD) activity (dBA), and we efficiently quantify the spatial property of dBA (sdBA). We also propose to incorporate dBA into the study of brain dynamics to gain insight into activity-connectivity co-evolution patterns. Studies of the dynamics of the human brain using functional magnetic resonance imaging (fMRI) have enabled the identification of unique functional network connectivity (FNC) states and provided new insights into mental disorders.
View Article and Find Full Text PDFBackground: Dynamic functional network connectivity (dFNC) summarizes associations among time-varying brain networks and is widely used for studying dynamics. However, most previous studies compute dFNC using temporal variability while spatial variability started receiving increasing attention. It is hence desirable to investigate spatial variability and the interaction between temporal and spatial variability.
View Article and Find Full Text PDFIEEE J Sel Top Signal Process
October 2020
There is a growing need for flexible methods for the analysis of large-scale functional magnetic resonance imaging (fMRI) data for the estimation of global signatures that summarize the population while preserving individual-specific traits. Independent vector analysis (IVA) is a data-driven method that jointly estimates global spatio-temporal patterns from multi-subject fMRI data, and effectively preserves subject variability. However, as we show, IVA performance is negatively affected when the number of datasets and components increases especially when there is low component correlation across the datasets.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
In application to functional magnetic resonance imaging (fMRI) data analysis, a number of data fusion algorithms have shown success in extracting interpretable brain networks that can distinguish two groups such two populations-patients with mental disorder and the healthy controls. However, there are situations where more than two groups exist such as the fusion of multi-task fMRI data. Therefore, in this work we propose the use of IVA to effectively extract information that is able to distinguish across multiple groups when applied to data fusion.
View Article and Find Full Text PDFThe extraction of common and distinct biomedical signatures among different populations allows for a more detailed study of the group-specific as well as distinct information of different populations. A number of subspace analysis algorithms have been developed and successfully applied to data fusion, however they are limited to joint analysis of only a couple of datasets. Since subspace analysis is very promising for analysis of multi-subject medical imaging data as well, we focus on this problem and propose a new method based on independent vector analysis (IVA) for common subspace extraction (IVA-CS) for multi-subject data analysis.
View Article and Find Full Text PDFDynamic functional network connectivity (dFNC) analysis is a widely-used to study associations between dynamic functional correlations and cognitive abilities. Traditional methods analyze time-varying association of different spatial networks while assuming that the spatial network itself is stationary. However, there has been very little work focused on voxelwise spatial variability.
View Article and Find Full Text PDFBackground: Data driven analysis methods such as independent component analysis (ICA) offer the advantage of estimating subject contributions when used in a second-level analysis. With the traditionally used regression-based methods this is achieved with a design matrix that has to be specified a priori.
New Method: We show that the ability of ICA to estimate subject contributions can be effectively used to perform steady-state as well as transient analysis of task functional magnetic resonance imaging (fMRI) data, which can help reveal important group differences.
IEEE Trans Med Imaging
July 2019
Dynamic functional connectivity analysis is an effective way to capture the networks that are functionally associated and continuously changing over the scanning period. However, these methods mostly analyze the dynamic associations across the activation patterns of the spatial networks while assuming that the spatial networks are stationary. Hence, a model that allows for the variability in both domains and reduces the assumptions imposed on the data provides an effective way for extracting spatiotemporal networks.
View Article and Find Full Text PDFData-driven methods have been widely used in functional magnetic resonance imaging (fMRI) data analysis. They extract latent factors, generally, through the use of a simple generative model. Independent component analysis (ICA) and dictionary learning (DL) are two popular data-driven methods that are based on two different forms of diversity-statistical properties of the data-statistical independence for ICA and sparsity for DL.
View Article and Find Full Text PDF