Publications by authors named "Suchi Gupta"

Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging.

View Article and Find Full Text PDF

The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have regenerative capacity and have reported a beneficial effect on the Japanese encephalitis virus (JEV) in an encephalitis model. However, the MSCs do not cross the blood-brain barrier and have other disadvantages limiting their therapeutic utility scope. Recently, there has been a shift in concept from a cell-based to a cell-free approach using MSCs-derived extracellular vesicles (MSC-EVs).

View Article and Find Full Text PDF
Article Synopsis
  • Small extracellular vesicles (EVs) play a vital role in cellular communication and have therapeutic potential for delivering biomolecules, especially those derived from stem cells.
  • The study employed iTRAQ-based proteomic analysis to evaluate the protein content of EVs from induced pluripotent stem cells and various mesenchymal stem cells, using bioinformatics tools for deeper insights.
  • Results showed that Wharton's jelly MSC-EVs had the highest expression of unique proteins, with specific proteins linked to critical processes like bone regeneration, wound healing, and immune regulation.
View Article and Find Full Text PDF

Mitochondria are one of the essential cellular organelles. Apart from being considered as the powerhouse of the cell, mitochondria have been widely known to regulate redox reaction, inflammation, cell survival, cell death, metabolism, etc., and are implicated in the progression of numerous disease conditions including neurodegenerative diseases.

View Article and Find Full Text PDF

During the last two decades several nanoscale materials were engineered for industrial and medical applications. Among them carbon nanotubes (CNTs) are the most exploited nanomaterials with global production of around 1000 tons/year. Besides several commercial benefits of CNTs, the fiber-like structures and their bio-persistency in lung tissues raise serious concerns about the possible adverse human health effects resembling those of asbestos fibers.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are emerging as an ideal candidate for regenerative medicine. It is known that the culture conditions impact the cellular properties of MSCs and their therapeutic behavior. Moreover, maintenance of MSCs in low oxygen tension for a short duration has shown to be beneficial for MSCs as it is similar to that of their physiological niche.

View Article and Find Full Text PDF

Adult Mesenchymal stem cells-derived exosomes carry several biologically active molecules that play prominent roles in controlling disease manifestations. The content of these exosomes, their functions, and effect on the immune cells may differ depending on their tissue sources. Therefore, in this study, we purified the exosomes from three different sources and, using the RNA-Seq approach, highly abundant microRNAs were identified and compared between exosomes and parental cells.

View Article and Find Full Text PDF

Mesenchymal Stem Cells (MSCs) derived Extracellular Vesicles (EVs) have emerged as an effective candidate for amelioration of liver fibrosis. However, the effect and the mechanisms of MSC-EVs in liver repair remains elusive. In this study, we have evaluated the differential regenerative efficacy of EVs derived from two different human tissue-specific MSCs (Adipose tissue; AD-MSC and Wharton's Jelly; WJ-MSC), in a murine model of chronic liver fibrosis.

View Article and Find Full Text PDF

Mesenchymal Stem Cells are potent therapeutic candidates in the field of regenerative medicine, owing to their immunomodulatory and differentiation potential. However, several complications come with their translational application like viability, duration, and degree of expansion, long-term storage, and high maintenance cost. Therefore, drawbacks of cell-based therapy can be overcome by a novel therapeutic modality emerging in translational research and application, i.

View Article and Find Full Text PDF

Background And Aims: Acute-on-chronic liver failure (ACLF) is a distinct clinical entity with high probability of organ failure and mortality. Since patients generally present late, experimental models are needed to understand the pathophysiology and natural course of the disease.

Methodology: To reproduce the syndrome of ACLF, chronic liver disease was induced in C57BL6 mice (6-8 weeks; approximately 20-24 g weight) by intraperitoneal administration of carbon tetrachloride (CCl) for 10 weeks followed by an acute injury with acetaminophen (APAP) and lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Methods: In the current study, we investigated the morphological differences, proliferation capacity, population doubling time (PDT), surface marker profiling, trilineage differentiation potential, and immunosuppressive ability of BM Mesenchymal Stem Cells (BM-MSCs) from untreated aAA patients and in the same number of age- and gender-matched controls.

Results: We observed similar morphology, proliferation capacity, phenotype, trilineage differentiation potential, and immunomodulatory properties of BM-MSCs in aAA patients and control subjects.

Conclusion: Our results confirm that the basic and immunosuppressive properties of BM-MSCs from aAA patients do not differ from normal BM-MSCs.

View Article and Find Full Text PDF

Acute inflammation is a protective reaction by the immune system in response to invading pathogens or tissue damage. Ideally, the response should be localized, self-limited, and returning to homeostasis. If not resolved, acute inflammation can result in organ pathologies leading to chronic inflammatory phenotypes.

View Article and Find Full Text PDF

The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.

View Article and Find Full Text PDF

The recent pandemic situation transpired due to coronavirus novel strain SARS-CoV-2 has become a global concern. This human coronavirus (HCov-19) has put the world on high alert as the numbers of confirmed cases are continuously increasing. The world is now fighting against this deadly virus and is leaving no stone unturned to find effective treatments through testing of various available drugs, including those effective against flu, malaria, etc.

View Article and Find Full Text PDF

Stem cells have been used in multiple clinical trials. Tracking these transplanted cells in vivo will provide real-time information on the fate of these cells. Iron oxide labeling is one such uncomplicated noninvasive labeling method.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are multipotent cells which hold immense potential in translational research as a novel treatment modality. In recent years, MSCs isolated from various tissues have been used in several clinical trials for the treatment of cardiac injury caused by permanent myocardial loss. However, a better MSCs source and an optimum inducer for in vitro cardiac differentiation are still far reaching and unexplored.

View Article and Find Full Text PDF

Background: Exosomes are nanovesicles (30-120 nm) of endosomal origin. These exosomes contain various functional proteins and RNAs that could be used for therapeutic purposes. Currently, having a standard method for exosome isolation retaining its biological properties with increased yield and purity is a major challenge.

View Article and Find Full Text PDF