Publications by authors named "Sucai Yang"

Thermally enhanced anoxic biodegradation is emerging as a promising method for removing PAHs from subsurface soil. However, some PAHs still remain in soil following remediation with thermally enhanced anoxic degradation due to low bioavailability of these residual PAHs. The effects of five surfactants (Tween 80, TX 100, Brij 30, SDS, and SDBS) on the desorption of PAHs, anoxic degradation of PAHs, and native bacteria in soil at high temperature (60 °C) were evaluated in this study.

View Article and Find Full Text PDF

In situ anoxic bioremediation is an easy-to-use technology to remediate polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Degradation of PAHs mediated by soil bacteria and archaea using CO as the electron acceptor is an important process for eliminating PAHs under methanogenic conditions; however, knowledge of the performance and mechanisms involved is poorly unveiled. In this study, the effectiveness and efficiency of NaHCO (CO) as an electron acceptor to stimulate the degradation of PAHs by bacteria and archaea in highly contaminated soil were investigated.

View Article and Find Full Text PDF

Combined chemical oxidation and bioremediation is a promising method of treating polycyclic aromatic hydrocarbon (PAH) contaminated soil, wherein indigenous soil bacteria play a critical role in the subsequent biodegradation of PAHs after the depletion of the oxidant. In this study, different Fenton conditions were applied by varying either the oxidation mode (conventional Fenton (CF), Fenton-like (LF), modified Fenton (MF), and graded modified Fenton (GMF)) or the HO dosage (0%, 3%, 6%, and 10% (v/v)) to treat PAH contaminated soil. The results revealed that when equal dosages of HO are applied, PAHs are significantly removed following oxidation treatment, and the removal percentages obeyed the following sequence: CF > GMF > MF > LF.

View Article and Find Full Text PDF

The prediction accuracy of the spatial distribution of soil pollutants at a site is relatively low. Related pollutants can be used as auxiliary variables to improve the prediction accuracy. However, little relevant research has been conducted on site soil pollution.

View Article and Find Full Text PDF

There is a lack of a systematic method for determining the optimal sampling scale based on the purposes of soil pollution investigations (purpose) and the factors influencing of pollutants, which could affect the accuracy of determining pollution scope of the pollution. Therefore, in this study, both the purpose and the influencing factors were considered to determine the optimal sampling scale. The conclusions were obtained through geostatistical and spatial analysis.

View Article and Find Full Text PDF

Quantitative identification of the main sources of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in soils around multiple types of key areas is of great significance for blocking pollution sources. However, there is a lack of more comprehensive relevant research. In this study, Beijing was taken as the research area and four main sources were identified using the positive matrix factorization (PMF) method.

View Article and Find Full Text PDF

Soil pollution at industrial sites is an important issue in China and in most other regions of the world. The accurate prediction of the spatial distribution of pollutants at contaminated industrial sites is a requirement for the development of most soil remediation strategies, and is commonly performed using spatial interpolation methods. However, significant and abrupt variations in the spatial distribution of pollutants decrease prediction accuracy.

View Article and Find Full Text PDF

Integrated chemical-biological treatment is a promising alternative to remove PAHs from contaminated soil, wherein indigenous bacteria is the key factor for the biodegradation of residual PAHs after the application of chemical oxidation. However, systematical study on the impact of persulfate (PS) oxidation on indigenous bacteria as well as PAHs removal is still scarce. In this study, the influences of different PS dosages (1%, 3%, 6%, and 10% [w/w]), as well as various activation methods (native iron, HO, alkaline, ferrous iron, and heat) on PAHs removal and indigenous bacteria in highly contaminated aged soil were investigated.

View Article and Find Full Text PDF

Accurate prediction of the spatial distribution of pollutants in soils based on applicable interpolation methods is often the basis for soil remediation in contaminated sites. However, the applicable interpolation method has not been determined for contaminated sites due to the complex spatial distribution characteristics and stronger local spatial variability of pollutants. In this research, the prediction accuracies of three interpolation methods (including the different values of their parameters) for the spatial distribution of benzo[b]fluoranthene (BbF) in four soil layers were compared.

View Article and Find Full Text PDF

With the rapid development of modern industry, heavy metals in the soil introduce the risk of serious pollution. To reduce this pollution risk, the following four research questions needed to be addressed: What are the main influencing factors of soil pollution? What is the degree of influence? Do factors operate independently or are they interconnected? Which regions have high pollution risk and should be paid more attention? The study area was in Huanjiang County, with 273 km, and geographical detector proved to be a useful tool to solve these four problems. We found that mine activity and pH value were the primary influencing factors for total and water-soluble heavy metals.

View Article and Find Full Text PDF

Lateral transportation of soil heavy metals in rainfall events could significantly increase the scope of pollution. Therefore, it is necessary to develop a model with high accuracy to simulate the migration quantity of heavy metals. A model for heavy metal migration simulation was developed based on the SWAT (Soil and Water Assessment Tool) model.

View Article and Find Full Text PDF

Spatial interpolation method is the basis of soil heavy metal pollution assessment and remediation. The existing evaluation index for interpolation accuracy did not combine with actual situation. The selection of interpolation methods needs to be based on specific research purposes and research object characteristics.

View Article and Find Full Text PDF

There are lots of problems in the domestic remediation of Cr (Ⅵ) contaminated soil field,such as lack of the key processing parameters,poor long-term effect and so on.The Cr (Ⅵ) heavy polluted surface soil was sampled from an electroplating site in North-China,and then treated with five different reducing reagents.At the same time,the on-line ORP probes and interval sampling test were chosen to monitor the reaction process,and to explore the reaction rate and effect.

View Article and Find Full Text PDF

Anaerobic/anoxic biodegradation of hydrocarbons offers an attractive approach to the removal of these compounds from polluted environments such as aquifers, aquatic sediments, submerged soils and subsurface soils. The application of nitrate was investigated to accelerate the degradation of gasoline components such as mono-aromatic hydrocarbons and total petroleum hydrocarbons (TPH) in soil by indigenous microorganisms under anoxic condition. The addition of nitrate had little effect on the degradation of mono-aromatic hydrocarbons m- & p-xylene, o-xylene, sec-butylbenzene and 1,2,4-trimethylbenzene, but facilitated the degradation of TPH (C6-C12) and mono-aromatic hydrocarbons toluene and ethylbenzene markedly.

View Article and Find Full Text PDF

Adding organic amendments to stimulate the biodegradation of pesticides is a subject of ongoing interest. The effect of sewage sludge on the bioremediation of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) contaminated soil was investigated in bench scale experiments, and intermittent aeration strategy was also used in this study to form an anaerobic-aerobic cycle. Bioremediation of DDT and HCH was enhanced with the addition of sewage sludge and the intermittent aeration.

View Article and Find Full Text PDF

There is always uncertainty in any water quality risk assessment. A Monte Carlo simulation (MCS) is regarded as a flexible, efficient method for characterizing such uncertainties. However, the required computational effort for MCS-based risk assessment is great, particularly when the number of random variables is large and the complicated water quality models have to be calculated by a computationally expensive numerical method, such as the finite element method (FEM).

View Article and Find Full Text PDF

Remediation of pesticide-polluted soil is particularly challenging when pesticides in soil are aged and a mixture of pesticides is present. Application of zerovalent iron (Fe(0)) was investigated to accelerate the degradation of HCHs (alpha-, beta-, gamma- and delta-hexachlorocyclohexane) and DDX (DDT, DDE and DDD) in the soil from a former organochlorine pesticide manufacturing plant. Ultrasonic extraction was used extract the organochlorine pesticides from soil.

View Article and Find Full Text PDF