Background And Aims: The fitness and viability of a tumor ecosystem are influenced by the spatial organization of its cells. We aimed to study the structure, architecture, and cell-cell dynamics of the heterogeneous liver cancer tumor microenvironment using spatially resolved multiplexed imaging.
Approach And Results: We performed co-detection by indexing multiplexed immunofluorescence imaging on 68 HCC biopsies from Thai patients [(Thailand Initiative in Genomics and Expression Research for Liver Cancer (TIGER-LC)] as a discovery cohort, and then validated the results in an additional 190 HCC biopsies from Chinese patients [Liver Cancer Institute (LCI)].
Obesity promotes triple-negative breast cancer (TNBC), and effective interventions are urgently needed to break the obesity-TNBC link. Epidemiologic studies indicate that bariatric surgery reduces TNBC risk, while evidence is limited or conflicted for weight loss via low-fat diet (LFD) or calorie restriction (CR). Using a murine model of obesity-driven TNBC, we compared the antitumor effects of vertical sleeve gastrectomy (VSG) with LFD, chronic CR, and intermittent CR.
View Article and Find Full Text PDFIntratumor heterogeneity may result from the evolution of tumor cells and their continuous interactions with the tumor microenvironment which collectively drives tumorigenesis. However, an appearance of cellular and molecular heterogeneity creates a challenge to define molecular features linked to tumor malignancy. Here we perform multiregional single-cell RNA sequencing (scRNA-seq) analysis of seven liver cancer patients (four hepatocellular carcinoma, HCC and three intrahepatic cholangiocarcinoma, iCCA).
View Article and Find Full Text PDFTumor heterogeneity is a major feature of primary liver cancers. Defined as the unique genotypic and phenotypic differences of cancer cells within a single tumor (intratumor) or amongst different patients (intertumor), tumor heterogeneity has consistently been linked to worse clinical outcomes in most, if not all, solid tumor types. In particular, liver cancer heterogeneity has been associated with altered immune infiltration, resistance to therapeutics, and worse overall patient survival.
View Article and Find Full Text PDFBackground And Aims: HCC is a highly aggressive and heterogeneous cancer type with limited treatment options. Identifying drivers of tumor heterogeneity may lead to better therapeutic options and favorable patient outcomes. We investigated whether apoptotic cell death and its spatial architecture is linked to tumor molecular heterogeneity using single-cell in situ hybridization analysis.
View Article and Find Full Text PDFBackground & Aims: Intratumor molecular heterogeneity is a key feature of tumorigenesis and is linked to treatment failure and patient prognosis. Herein, we aimed to determine what drives tumor cell evolution by performing single-cell transcriptomic analysis.
Methods: We analyzed 46 hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA) biopsies from 37 patients enrolled in interventional studies at the NIH Clinical Center, with 16 biopsies collected before and after treatment from 7 patients.
Single-cell technologies are revolutionizing our understanding of cellular heterogeneity and functional diversity in health and disease. Here, we review the current knowledge and advances in liver biology using single-cell approaches. We focus on the landscape of the composition and the function of cells in a healthy liver in the context of its spatial organization.
View Article and Find Full Text PDFBackground: Therapeutic options for patients with hepatocellular carcinoma (HCC) are limited. Transarterial chemoembolization (TACE) is an interventional procedure used to deliver chemotherapy and embolizing agents directly to the tumor and is the procedure of choice for patients with intermediate stage HCC. While effective, more than 40% of patients do not respond to therapy, highlighting the need to investigate possible mechanisms of resistance.
View Article and Find Full Text PDFTumor heterogeneity is a large conundrum in cancer medicine, making most therapeutic interventions palliative rather than curative. Here we discuss the implications of how molecularly targeted therapies in solid malignancies that promote limited cancer cell death may in fact make tumors more heterogeneous, increase aggressive phenotypes, and thus worsen patient outcomes.
View Article and Find Full Text PDFDeregulated RNA-binding proteins (RBP), such as Argonaute 2 (AGO2), mediate tumor-promoting transcriptomic changes during carcinogenesis, including hepatocellular carcinoma (HCC). While AGO2 is well characterized as a member of the RNA-induced silencing complex (RISC), which represses gene expression through miRNAs, its role as a bona fide RBP remains unclear. In this study, we investigated AGO2's role as an RBP that regulates the transcript to promote HCC.
View Article and Find Full Text PDFGlioblastoma (GBM; grade 4 glioma) is a highly aggressive and incurable tumor. GBM has recently been characterized as highly dependent on alternative splicing, a critical driver of tumor heterogeneity and plasticity. Estrogen-related receptor β (ERR-β) is an orphan nuclear receptor expressed in the brain, where alternative splicing of the 3' end of the pre-mRNA leads to the production of 3 validated ERR-β protein products: ERR-β short form (ERR-βsf), ERR-β2, and ERR-β exon 10 deleted.
View Article and Find Full Text PDFTransl Gastroenterol Hepatol
May 2019
Hepatocellular carcinoma (HCC) is a genetically heterogeneous disease for which a dominant actionable molecular driver has not been identified. Patients with the stem cell-like EpCAMAFP HCC subtype have poor prognosis. Here, we performed a genome-wide RNAi screen to identify genes with a synthetic lethal interaction with EpCAM as a potential therapeutic target for the EpCAMAFP HCC subtype.
View Article and Find Full Text PDFObesity is associated with poor prognosis in triple-negative breast cancer (TNBC). Preclinical models of TNBC were used to test the hypothesis that increased leptin signaling drives obesity-associated TNBC development by promoting cancer stem cell (CSC) enrichment and/or epithelial-to-mesenchymal transition (EMT). MMTV-Wnt-1 transgenic mice, which develop spontaneous basal-like, triple-negative mammary tumors, received either a control diet (10% kcal from fat) or a diet-induced obesity regimen (DIO, 60% kcal from fat) for up to 42 weeks ( = 15/group).
View Article and Find Full Text PDFAdipose tissue dysregulation, a hallmark of obesity, contributes to a chronic state of low-grade inflammation and is associated with increased risk and progression of several breast cancer subtypes, including claudin-low breast tumors. Unfortunately, mechanistic targets for breaking the links between obesity-associated adipose tissue dysfunction, inflammation, and claudin-low breast cancer growth have not been elucidated. Ovariectomized female C57BL/6 mice were randomized (n = 15/group) to receive a control diet, a diet-induced obesity (DIO) diet, or a DIO + resveratrol (0.
View Article and Find Full Text PDFThe association between obesity and breast cancer risk and prognosis is well established in estrogen receptor (ER)-positive disease but less clear in HER2-positive disease. Here, we report preclinical evidence suggesting weight maintenance through calorie restriction (CR) may limit risk of HER2-positive breast cancer. In female MMTV-HER2/neu transgenic mice, we found that ERα and ERβ expression, mammary tumorigenesis, and survival are energy balance dependent in association with epigenetic reprogramming.
View Article and Find Full Text PDFProstaglandins Other Lipid Mediat
September 2016
Today's world population has an unprecedented risk of dying from the consequences of being overweight and obese. Chronic diseases such as cardiovascular disease, type 2 diabetes, and cancer are often accelerated because of excessive adiposity. Various biological mechanisms are implicated in the obesity-cancer link, particularly local and systemic inflammation as well as altered growth factor signaling pathways.
View Article and Find Full Text PDFUsing a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively.
View Article and Find Full Text PDF