Publications by authors named "Subrata Manna"

The early events that lead to the inflammatory and immune-modulatory effects of radiation therapy (RT) in the tumor microenvironment (TME) after its DNA damage response activating the innate DNA-sensing pathways are largely unknown. Neutrophilic infiltration into the TME in response to RT is an early innate inflammatory response that occurs within 24-48 h. Using two different syngeneic murine tumor models (RM-9 and MC-38), we demonstrated that CXCR2 blockade significantly reduced RT-induced neutrophilic infiltration.

View Article and Find Full Text PDF

Purpose: This phase II clinical trial evaluated whether the addition of stereotactic ablative radiotherapy (SAbR), which may promote tumor antigen presentation, improves the overall response rate (ORR) to high-dose IL2 (HD IL2) in metastatic renal cell carcinoma (mRCC).

Patients And Methods: Patients with pathologic evidence of clear cell renal cell carcinoma (RCC) and radiographic evidence of metastasis were enrolled in this single-arm trial and were treated with SAbR, followed by HD IL2. ORR was assessed based on nonirradiated metastases.

View Article and Find Full Text PDF

Purpose: To evaluate the feasibility, safety, oncologic outcomes, and immune effect of neoadjuvant stereotactic radiation (Neo-SAbR) followed by radical nephrectomy and thrombectomy (RN-IVCT).

Methods And Materials: These are results from the safety lead-in portion of a single-arm phase 1 and 2 trial. Patients with kidney cancer (renal cell carcinoma [RCC]) and inferior vena cava (IVC) tumor thrombus (TT) underwent Neo-SAbR (40 Gy in 5 fractions) to the IVC-TT followed by open RN-IVCT.

View Article and Find Full Text PDF

The anti-tumor activity of interferons (IFNs) was first appreciated about half a century ago, and IFN-α2 was the first cancer immunotherapy approved by the US Food and Drug Administration. Radiation therapy (RT), one of the pillars of cancer treatment, directly causes DNA damage, which can lead to senescence and cell death in tumor cells. In recent years, however, RT-induced immunomodulatory effects have been recognized to play an indispensable role in achieving the optimum therapeutic effect of RT.

View Article and Find Full Text PDF

Lack of responsiveness to checkpoint inhibitors is a central problem in the modern era of cancer immunotherapy. Tumor neoantigens are critical targets of the host antitumor immune response, and their presence correlates with the efficacy of immunotherapy treatment. Many studies involving assessment of tumor neoantigens principally focus on total neoantigen load, which simplistically treats all neoantigens equally.

View Article and Find Full Text PDF

Estrogen-related receptor alpha (ERRα) is an orphan nuclear factor that is a master regulator of cellular energy metabolism. ERRα is overexpressed in a variety of tumors, including ovarian, prostate, colorectal, cervical and breast, and is associated with a more aggressive tumor and a worse outcome. In breast cancer, specifically, high ERRα expression is associated with an increased rate of recurrence and a poor prognosis.

View Article and Find Full Text PDF

Homologous recombination (HR) is a conserved process that maintains genome stability and cell survival by repairing DNA double-strand breaks (DSBs). The RAD51-related family of proteins is involved in repair of DSBs; consequently, deregulation of RAD51 causes chromosomal rearrangements and stimulates tumorigenesis. RAD51C has been identified as a potential tumor suppressor and a breast and ovarian cancer susceptibility gene.

View Article and Find Full Text PDF

Breast cancer is a highly heterogeneous disease. Tamoxifen is a selective estrogen receptor (ER) modulator and is mainly indicated for the treatment of breast cancer in postmenopausal women and postsurgery neoadjuvant therapy in ER-positive breast cancers. Interestingly, 5-10% of the ER-negative breast cancers have also shown sensitivity to tamoxifen treatment.

View Article and Find Full Text PDF

Purpose: Estrogen-related receptor alpha (ERRα) signaling has recently been implicated in breast cancer. We investigated the clinical value of ERRα in randomized cohorts of tamoxifen-treated and adjuvant-untreated patients.

Experimental Design: Cox proportional hazards regression was used to evaluate the significance of associations between ERRα gene expression levels and patient DMFS in a previously published microarray dataset representing 2,000 breast tumor cases derived from multiple medical centers worldwide.

View Article and Find Full Text PDF

Proinflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8) contributes to ovarian cancer progression through its induction of tumor cell proliferation, survival, angiogenesis, and metastasis. Proteasome inhibition by bortezomib, which has been used as a frontline therapy in multiple myeloma, has shown only limited effectiveness in ovarian cancer and other solid tumors. However, the responsible mechanisms remain elusive.

View Article and Find Full Text PDF

Expression of the proinflammatory and proangiogenic chemokine IL-8, which is regulated at the transcriptional level by NF-κB, is constitutively increased in androgen-independent metastatic prostate cancer and correlates with poor prognosis. Inhibition of NF-κB-dependent transcription was used as an anticancer strategy for the development of the first clinically approved 26S proteasome inhibitor, bortezomib (BZ). Even though BZ has shown remarkable antitumor activity in hematological malignancies, it has been less effective in prostate cancer and other solid tumors; however, the mechanisms have not been fully understood.

View Article and Find Full Text PDF

Transcription factor NFκB comprises a family of proteins that serve as crucial regulators of genes involved in host immune and inflammatory responses, cell survival, proliferation, and differentiation. Since transcription of NFκB-dependent genes is increased in numerous inflammatory disorders as well as in many types of cancer and leukemia, inhibition of NFκB-dependent transcription thus represents an important therapeutic target. We have previously shown that in human leukocytes, transcription of NFκB-dependent genes is inhibited by the nuclear translocation and accumulation of IκBα, which can be induced by an inhibitor of CRM1-dependent nuclear export, leptomycin B (LMB).

View Article and Find Full Text PDF

Transcription factor NFκB is a key regulator of genes involved in immune and inflammatory responses, as well as genes regulating cell proliferation and survival. In addition to many inflammatory disorders, NFκB is constitutively activated in a variety of human cancers and leukemia. Thus, inhibition of NFκB DNA binding activity represents an important therapeutic approach for disorders characterized by high levels of constitutive NFκB activity.

View Article and Find Full Text PDF

Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells.

View Article and Find Full Text PDF