We investigated the protective effect of a natural polyphenol, magnolol, on Saccharomyces cerevisiae cells under oxidative stress, and during aging. Our results showed the sensitivity of S. cerevisiae antioxidant gene deficient mutants (sod1∆, sod2∆, cta1∆, ctt1∆, gtt2∆ and tsa1∆) against hydrogen peroxide (H2O2) and menadione stress was rescued by magnolol as demonstrated in spot and colony forming unit counts.
View Article and Find Full Text PDFThis study evaluates the protective effect of astaxanthin against dichlorvos cytotoxicity in yeast . Dichlorvos induce a dose-dependent cytotoxicity in yeast cells, which is mediated by oxidative stress. Our experimental results showed pre-treatment with astaxanthin enhances cell viability by 20-30% in yeast cells exposed to dichlorvos.
View Article and Find Full Text PDFThe budding yeast, Saccharomyces cerevisiae, is an efficient model for studying oxidative stress, programmed cell death and aging. The present study was carried out to investigate antioxidant, the anti-apoptotic and anti-aging activity of a natural compound, astaxanthin, in S. cerevisiae model.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in regulating gene expression in animals, plants, and viruses, which involves in biological processes including development, cancer, immunity, and host-microorganism interactions. In this present study, we have used the computational approach to identify potent miRNAs involved in Anopheles gambiae immune response. Analysis of 217,261 A.
View Article and Find Full Text PDF