Publications by authors named "Subramanian Suriyanarayanan"

Rapid and accurate serological analysis of SARS-CoV-2 antibodies is important for assessing immune protection from vaccination or infection of individuals and for projecting virus spread within a population. The quartz crystal microbalance (QCM) is a label-free flow-based sensor platform that offers an opportunity to detect the binding of a fluid-phase ligand to an immobilized target molecule in real time. A QCM-based assay was developed for the detection of SARS-CoV-2 antibody binding and evaluated for assay reproducibility.

View Article and Find Full Text PDF

The growing demand for lithium-ion batteries (LiBs) for the electronic and automobile industries combined with the limited availability of key metal components, in particular cobalt, drives the need for efficient methods for the recovery and recycling of these materials from battery waste. Herein, we introduce a novel and efficient approach for the extraction of cobalt, and other metal components, from spent LiBs using a nonionic deep eutectic solvent (ni-DES) comprised of -methylurea and acetamide under relatively mild conditions. Cobalt could be recovered from lithium cobalt oxide-based LiBs with an extraction efficiency of >97% and used to fabricate new batteries.

View Article and Find Full Text PDF

Proteinaceous, tunable nanostructures of zein (prolamine of corn) were developed as biotinyl-specific receptors using a molecular imprinting technique. Sacrificial templates, such as latex beads (LB3) and anodized alumina membrane (AAM), have been used to control nanostructural patterns in biotin-imprinted zein (BMZ). Briefly, a methanolic solution of the zein-biotin complex was drop cast upon a self-organized LB3 and AAM templates on Au/quartz surfaces.

View Article and Find Full Text PDF

Gold surface-bound hyperbranched polyethyleneimine (PEI) films decorated with palladium nanoparticles have been used as efficient catalysts for a series of Suzuki reactions. This thin film-format demonstrated good catalytic efficiency (TON up to 3.4 × 10) and stability.

View Article and Find Full Text PDF

Oxytocin imprinted polymer nanoparticles were synthesized by glass bead supported solid phase synthesis, with NMR and molecular dynamics studies used to investigate monomer-template interactions. The nanoparticles were characterized by dynamic light scattering, scanning- and transmission electron microscopy and X-ray photoelectron spectroscopy. Investigation of nanoparticle-template recognition using quartz crystal microbalance-based studies revealed sub-nanomolar affinity, ≈ 0.

View Article and Find Full Text PDF

Nano-structured materials are used in electronics, diagnostics, therapeutics, smart packaging, energy management and textiles, areas critical for society and quality of life. However, their fabrication often places high demands on limited natural resources. Accordingly, renewable sources for the feedstocks used in their production are highly desirable.

View Article and Find Full Text PDF

Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.

View Article and Find Full Text PDF

Monodisperse magnetic γ-FeO nanoparticles (MNPs) were prepared by a simple, improved, one-pot solvothermal synthesis using SDS and PEG 6000 as double capping reagents. This double protecting layer afforded better MNP uniformity (Z average 257 ± 11.12 nm, PDI = 0.

View Article and Find Full Text PDF

Significant enantioselective recognition has been achieved through the introduction of long range ordered and highly interconnected 300 nm diameter pores in molecularly imprinted polymer matrices.

View Article and Find Full Text PDF

A family of non-ionic deep eutectic liquids has been developed based upon mixtures of solid -alkyl derivatives of urea and acetamide that in some cases have melting points below room temperature. The eutectic behaviour and physical characteristics of a series of eleven eutectic mixtures are presented, along with a molecular dynamics study-supported hypothesis for the origin of the non-ideal mixing of these substances. Their use as solvents in applications ranging from natural product extraction to organic and polymer synthesis are demonstrated.

View Article and Find Full Text PDF

Metal-catalyzed cross-coupling reactions are among the most important transformations in organic synthesis. However, the use of C-H activation for sp C-N bond formation remains one of the major challenges in the field of cross-coupling chemistry. Described herein is the first example of the synergistic combination of copper catalysis and electrocatalysis for aryl C-H amination under mild reaction conditions in an atom-and step-economical manner with the liberation of H as the sole and benign byproduct.

View Article and Find Full Text PDF

The development of in silico strategies for the study of the molecular imprinting process and the properties of molecularly imprinted materials has been driven by a growing awareness of the inherent complexity of these systems and even by an increased awareness of the potential of these materials for use in a range of application areas. Here we highlight the development of theoretical and computational strategies that are contributing to an improved understanding of the mechanisms underlying molecularly imprinted material synthesis and performance, and even their rational design.

View Article and Find Full Text PDF

Phage display screening of a surface-immobilized adenine derivative led to the identification of a heptameric peptide with selectivity for adenine as demonstrated through quartz crystal microbalance (QCM) studies. The peptide demonstrated a concentration dependent affinity for an adeninyl moiety decorated surface (K D of 968 ± 53.3 μM), which highlights the power of piezoelectric sensing in the study of weak interactions.

View Article and Find Full Text PDF

Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP) films have been prepared on gold-coated quartz (Au/quartz) resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC) medium (triton X-100/water). Films prepared in water and in the absence of template were used for control studies. Infrared spectroscopic studies demonstrated comparable chemical compositions for LC and control polymer films.

View Article and Find Full Text PDF

Background: The interaction between biotin and avidin is utilized in a wide range of assay and diagnostic systems. A robust material capable of binding biotin should offer scope in the development of reusable assay materials and biosensor recognition elements.

Results: Biotin-selective thin (3-5 nm) films have been fabricated on hexadecanethiol self assembled monolayer (SAM) coated Au/quartz resonators.

View Article and Find Full Text PDF

Macroporous polymer films with long-range uniformity and biotinyl-moiety selective recognition sites have been developed. A hierarchical molecular imprinting strategy afforded significant enhancements in quartz crystal microbalance (QCM) sensitivities towards biotinylated compounds.

View Article and Find Full Text PDF

A novel hyperbranched polyethyleneimine (PEI) modified gold surface has been designed, fabricated, and investigated with respect to its ability to resist non-specific adsorption of proteins. The facile synthesis strategy, based on self-assembly, involves immobilization of polyethyleneimine to gold surfaces modified with 11-mercaptoundecanoic acid (MuDA) monolayers using traditional carbodiimide chemistry. The hyperbranched polymer brushes were characterized by X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

In principle, molecularly imprinted polymer science and technology provides a means for ready access to nano-structured polymeric materials of predetermined selectivity. The versatility of the technique has brought it to the attention of many working with the development of nanomaterials with biological or biomimetic properties for use as therapeutics or in medical devices. Nonetheless, the further evolution of the field necessitates the development of robust predictive tools capable of handling the complexity of molecular imprinting systems.

View Article and Find Full Text PDF

An adenine-templated molecularly imprinted polymer (MIP) film, deposited on a poly(bithiophene) barrier film, served as the recognition element of a piezomicrogravimetric (acoustic) chemosensor. A 10MHz AT-cut shear-thickness-mode bulk-acoustic-wave quartz crystal resonator with Pt film electrodes was used as the signal transducer. Adenine electrooxidation was prevented by the barrier film.

View Article and Find Full Text PDF

A piezoelectric microgravimetry (PM) chemosensor, featuring a film of molecularly imprinted polymer (MIP) of poly[bis(2,2'-bithienyl)methane] bearing either a 3,4-dihydroxyphenyl or benzo-18-crown-6 substituent, for selective determination of dopamine was devised and tested. A Pt/quartz resonator and a dopamine-templated MIP film, deposited by electropolymerization onto an underlayer of poly(bithiophene), served as the transducer and recognition element of the chemosensor, respectively. The UV-vis spectroscopic and XPS as well as electrochemical measurements verified completeness of the dopamine template extraction with a strong base solution.

View Article and Find Full Text PDF

A histamine piezoelectric (acoustic) sensor using a molecularly imprinted polymer (MIP) film has been devised and tested. The sensor comprises an electrodeposited MIP film as the recognition element and a 10 MHz AT-cut shear-thickness-mode bulk-acoustic-wave quartz crystal resonator with Pt film electrodes as the signal transducer. Preparation of the sensing film involved two consecutive electrochemical polymerizations, performed under cyclic voltammetric conditions, with the use of a supporting electrolyte of 0.

View Article and Find Full Text PDF