Purpose: Epidemiological changes in retinopathy of prematurity (ROP) depend on neonatal care, neonatal mortality, and the ability to carefully titrate and monitor oxygen. We evaluate whether an artificial intelligence (AI) algorithm for assessing ROP severity in babies can be used to evaluate changes in disease epidemiology in babies from South India over a 5-year period.
Design: Retrospective cohort study.
Importance: Retinopathy of prematurity (ROP) is a leading cause of preventable blindness that disproportionately affects children born in low- and middle-income countries (LMICs). In-person and telemedical screening examinations can reduce this risk but are challenging to implement in LMICs owing to the multitude of at-risk infants and lack of trained ophthalmologists.
Objective: To implement an ROP risk model using retinal images from a single baseline examination to identify infants who will develop treatment-requiring (TR)-ROP in LMIC telemedicine programs.
Objectives: Childhood blindness from retinopathy of prematurity (ROP) is increasing as a result of improvements in neonatal care worldwide. We evaluate the effectiveness of artificial intelligence (AI)-based screening in an Indian ROP telemedicine program and whether differences in ROP severity between neonatal care units (NCUs) identified by using AI are related to differences in oxygen-titrating capability.
Methods: External validation study of an existing AI-based quantitative severity scale for ROP on a data set of images from the Retinopathy of Prematurity Eradication Save Our Sight ROP telemedicine program in India.