Introduction: Heterotopic ossification (HO) occurs following orthopedic trauma, spinal cord injuries, brain trauma and limb amputations. Once symptomatic, HO causes pain, limited mobility and decreased quality of life. Current treatments are limited and have significant complications with high recurrence rates, underscoring the need for improved therapeutic interventions.
View Article and Find Full Text PDFAims/hypothesis: The loss of pericytes surrounding the retinal vasculature in early diabetic retinopathy underlies changes to the neurovascular unit that lead to more destructive forms of the disease. However, it is unclear which changes lead to loss of retinal pericytes. This study investigated the hypothesis that chronic increases in one or more inflammatory factors mitigate the signalling pathways needed for pericyte survival.
View Article and Find Full Text PDFCalcific aortic valve disease is common in the aging population and is characterized by the histological changes of the aortic valves including extracellular matrix remodeling, osteochondrogenic differentiation, and calcification. Combined, these changes lead to aortic sclerosis, aortic stenosis (AS), and eventually to heart failure. Runt-related transcription factor 2 (Runx2) is a transcription factor highly expressed in the calcified aortic valves.
View Article and Find Full Text PDFBackground: The acetylation state of histones has been used as an indicator of the developmental state of progenitor and differentiating cells. The goal of this study was to determine the nuclear localization patterns of Class I histone deacetylases (HDACs) in retinal progenitor cells (RPCs) and retinal ganglion cells (RGCs), as the first step in understanding their potential importance in cell fate determination within the murine retina.
Results: The only HDAC to label RPC nuclei at E16 and P5 was HDAC1.
Background: Our previous studies have shown that BMP7 is able to trigger activation of retinal macroglia. However, these studies showed the responsiveness of Müller glial cells and retinal astrocytes in vitro was attenuated in comparison to those in vivo, indicating other retinal cell types may be mediating the response of the macroglial cells to BMP7. In this study, we test the hypothesis that BMP7-mediated gliosis is the result of inflammatory signaling from retinal microglia.
View Article and Find Full Text PDFPurpose: The focus of this study was to determine whether bone morphogenetic proteins (BMPs) trigger reactive gliosis in retinal astrocytes and/or Müller glial cells.
Methods: Retinal astrocytes and the Müller glial cell line MIO-M1 were treated with vehicle, BMP7, or BMP4. Samples from the treated cells were analyzed for changes in gliosis markers using reverse transcriptase - quantitative PCR (RT-qPCR) and western blotting.
Background: Histone deacetylases (HDACs) play important roles in glial cell development and in disease states within multiple regions of the central nervous system. However, little is known about HDAC expression or function within the optic nerve. As a first step in understanding the role of HDACs in optic nerve, this study examines the spatio-temporal expression patterns of methylated histone 3 (K9), acetylated histone 3 (K18), and HDACs 1-6 and 8-11 in the developing murine optic nerve head.
View Article and Find Full Text PDF