In this study, we first investigated the effects of textural parameters and surface properties of ordered mesoporous carbon (OMC) for the adsorptive removal of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) from aqueous solutions. The BET surface area, pore volume, and surface functional groups of OMC played a crucial role in affecting the adsorption performance of BTEX. Boric acid was used to increase the pore size and BET surface area of OMC from 5.
View Article and Find Full Text PDFChemical and petrochemical industries produce substantial amounts of wastewater everyday. This wastewater contains organic pollutants such as benzene, toluene, ethylbenzene and xylenes (BTEX) that are toxic to human and aquatic life. Ordered Mesoporous Carbon (OMC), the adsorbent that possesses the characteristics of an ideal adsorbent was investigated to understand its properties and suitability for BTEX removal.
View Article and Find Full Text PDFCarbon nanotubes have been known to develop hierarchically ordered polymer nanocomposites by virtue of epitaxial crystallization. A unique product of CNT induced crystallization is generation of nanohybrid shish-kebab (NHSK) structure, which has gained tremendous attention owing to its unique applications. However, research faces major challenges in terms of producing tunable patterns on CNTs, which are largely governed by precise control of the crystallization parameters.
View Article and Find Full Text PDFWe report a novel nanohybrid shish-kebab (NHSK) architecture of cellulose nanofibers (CNFs) and a block copolymer, (polyethylene-b-polyethylene glycol) (PE-b-PEG). Cellulose microfibers were ultrasonically dispersed to generate cellulose nanofibers in the size range of 50±10nm in diameter, while the block copolymer was crystallized using a solution crystallization approach to prepare NHSK. This unique approach allows the flocculated NHSK product to transfer quickly from toluene to ethanol, in order to shorten the preparation time.
View Article and Find Full Text PDFCalcium palmitate and magnesium palmitate (which are major constituents of waste water) are insoluble precipitates that accumulate in bodies of water. This leads to the formation of biofilms because bacterial cells can use these fatty acid salts as a carbon source. It is important to study the formation of biofilms because they cause corrosion of pipelines and water contamination.
View Article and Find Full Text PDFColonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM).
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
December 2010
A number of microorganisms belonging to the genera of algae, yeast, bacteria, and fungi have ability to accumulate neutral lipids under specific cultivation conditions. The microbial lipids contain high fractions of polyunsaturated fatty acids and have the potential to serve as a source of significant quantities of transportation fuels. This paper reviews the current state of the art of this field.
View Article and Find Full Text PDF