Publications by authors named "Subodh Samrat"

Emergence of newer variants of SARS-CoV-2 underscores the need for effective antivirals to complement the vaccination program in managing COVID-19. The multi-functional papain-like protease (PLpro) of SARS-CoV-2 is an essential viral protein that not only regulates the viral replication but also modulates the host immune system, making it a promising therapeutic target. To this end, we developed an in vitro interferon stimulating gene 15 (ISG15)-based Förster resonance energy transfer (FRET) assay and screened the National Cancer Institute (NCI) Diversity Set VI compound library, which comprises 1584 small molecules.

View Article and Find Full Text PDF

Flavivirus infections, such as those caused by dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and Zika virus (ZIKV), pose a rising threat to global health. There are no FDA-approved drugs for flaviviruses, although a small number of flaviviruses have vaccines. For flaviviruses or unknown viruses that may appear in the future, it is particularly desirable to identify broad-spectrum inhibitors.

View Article and Find Full Text PDF

SARS-CoV-2 has caused a global pandemic with significant humanity and economic loss since 2020. Currently, only limited options are available to treat SARS-CoV-2 infections for vulnerable populations. In this study, we report a universal fluorescence polarization (FP)-based high throughput screening (HTS) assay for SAM-dependent viral methyltransferases (MTases), using a fluorescent SAM-analogue, FL-NAH.

View Article and Find Full Text PDF
Article Synopsis
  • Erythrosin B, an FDA-approved food additive, effectively inhibits Zika virus (ZIKV) replication in cell culture and 3D mini-brain organoid models.
  • Despite its low absorption rates in pharmacokinetic studies, oral administration improved survival rates in mice exposed to lethal ZIKV doses.
  • Modifications to erythrosin B's structure affect its antiviral efficacy, with certain changes enhancing activity, while remaining nontoxic to human cells.
View Article and Find Full Text PDF

SARS-CoV-2 has raised the alarm to search for effective therapy for this virus. To date several vaccines have been approved but few available drugs reported recently still need approval from FDA. Remdesivir was approved for emergency use only.

View Article and Find Full Text PDF

Flaviviruses cause a significant amount of mortality and morbidity, especially in regions where they are endemic. A recent example is the outbreak of Zika virus throughout the world. Development of antiviral drugs against different viral targets is as important as the development of vaccines.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide since its first incidence in Wuhan, China, in December 2019. Although the case fatality rate of COVID-19 appears to be lower than that of SARS and Middle East respiratory syndrome (MERS), the higher transmissibility of SARS-CoV-2 has caused the total fatality to surpass other viral diseases, reaching more than 1 million globally as of October 6, 2020. The rate at which the disease is spreading calls for a therapy that is useful for treating a large population.

View Article and Find Full Text PDF

Many flaviviruses including the Dengue virus (DENV), Zika virus (ZIKV), West Nile virus, Yellow Fever virus, and Japanese encephalitis virus are significant human pathogens, unfortunately without any specific therapy. Here, we demonstrate that methylene blue, an FDA-approved drug, is a broad-spectrum and potent antiviral against Zika virus and Dengue virus both and . We found that methylene blue can considerably inhibit the interactions between viral protease NS3 and its NS2B co-factor, inhibit viral protease activity, inhibit viral growth, protect 3D mini-brain organoids from ZIKV infection, and reduce viremia in a mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • Flaviviruses, including Zika virus, cause major health issues, highlighting the urgent need for effective treatments.
  • Researchers discovered a new compound, JMX0207, derived from niclosamide, which shows better drug properties and effectiveness against the Zika virus by targeting the NS3-NS2B interaction.
  • In laboratory tests and animal models, JMX0207 significantly reduced Zika virus infection and viremia, indicating its potential as a therapeutic option.
View Article and Find Full Text PDF

The recent outbreak of the betacoronavirus SARS-CoV-2 has become a significant concern to public health care worldwide. As of August 19, 2020, more than 22,140,472 people are infected, and over 781,135 people have died due to this deadly virus. In the USA alone, over 5,482,602 people are currently infected, and more than 171,823 people have died.

View Article and Find Full Text PDF

ND10 nuclear bodies, as part of the intrinsic defenses, impose repression on incoming DNA. Infected cell protein 0 (ICP0), an E3 ubiquitin ligase of herpes simplex virus 1 (HSV-1), can derepress viral genes by degrading ND10 organizers to disrupt ND10. These events are part of the initial tug of war between HSV-1 and host, which determines the ultimate outcome of infection.

View Article and Find Full Text PDF

Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an immediate early protein containing a RING-type E3 ubiquitin ligase. It is responsible for the proteasomal degradation of host restrictive factors and the subsequent viral gene activation. ICP0 contains a canonical nuclear localization sequence (NLS).

View Article and Find Full Text PDF

Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an immediate early protein containing a RING-type E3 ubiquitin ligase. It targets several host factors for proteasomal degradation and subsequently activates viral expression. ICP0 has a nuclear localization sequence and functions in the nucleus early during infection.

View Article and Find Full Text PDF

Unlabelled: Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an α gene product required for viral replication at low multiplicities of infection. Upon entry, nuclear domain 10 (ND10) converges at the incoming DNA and represses viral gene expression. ICP0 contains a RING-type E3 ubiquitin ligase that degrades the ND10 organizer PML and disperses ND10 to alleviate the repression.

View Article and Find Full Text PDF

Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens.

View Article and Find Full Text PDF

Multispecific, broad, and potent T cell responses have been correlated with viral clearance in hepatitis C virus (HCV) infection. However, the majority of infected patients develop chronic infection, suggesting that natural infection mostly leads to development of inefficient T cell immunity. Multiple mechanisms of immune modulation and evasion have been shown in HCV infection through various investigations.

View Article and Find Full Text PDF

Hepatitis B and C (HBV and HCV) are hepatotropic viruses in humans with approximately 350 and 170 million chronic carriers respectively. Since both viruses have similar modes of transmission, many people are co-infected. Co-infection is common in intravenous drug users, HIV-positive individuals, and transplant recipients.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) leads to chronic infection in the majority of infected patients presumably due to failure or inefficiency of the immune responses generated. Both antibody and cellular immune responses have been suggested to be important in viral clearance. Non-replicative adenoviral vectors expressing antigens of interest are considered as attractive vaccine vectors for a number of pathogens.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) leads to chronic infection in the majority of infected individuals due to lack, failure, or inefficiency of generated adaptive immune responses. In a minority of patients, acute infection is followed by viral clearance. The immune correlates of viral clearance are not clear yet but have been extensively investigated, suggesting that multispecific and multifunctional cellular immunity is involved.

View Article and Find Full Text PDF

HIV-1 Rev protein regulates the expression of HIV-1 transcripts by binding to a highly structured stem loop structure called the Rev Responsive Element (RRE) present in the genomic and partially spliced RNAs. Genetic variation in this structure is likely to affect binding of Rev protein and ultimately overall gene expression and replication. We characterized RRE sequences from 13 HIV-1 infected individuals from North India which also included two mother-child pairs following vertical transmission.

View Article and Find Full Text PDF

HIV-1 displays extensive genetic diversity globally which poses challenge in designing a suitable antigen/immunogen to provoke desired protective immune response in host. HIV-1 mediated pathogenesis is complex and involves host genes, virus genes and other factors. A number of genetic subtypes have been identified based on sequence variations, largely in envelope region.

View Article and Find Full Text PDF

Dictyostelium discoideum exhibits the largest repository of polyketide synthase (PKS) proteins of all known genomes. However, the functional relevance of these proteins in the biology of this organism remains largely obscure. On the basis of computational, biochemical, and gene expression studies, we propose that the multifunctional Dictyostelium PKS (DiPKS) protein DiPKS1 could be involved in the biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol (MPBD).

View Article and Find Full Text PDF