Publications by authors named "Subodh C Tiwari"

Nonadiabatic quantum molecular dynamics is used to investigate the evolution of GeTe photoexcited states. Results reveal a photoexcitation-induced picosecond nonthermal path for the loss of long-range order. A valence electron excitation threshold of 4% is found to trigger local disorder by switching Ge atoms from octahedral to tetrahedral sites and promoting Ge-Ge bonding.

View Article and Find Full Text PDF

Aramid fibers composed of poly(p-phenylene terephthalamide) (PPTA) polymers are attractive materials due to their high strength, low weight, and high shock resilience. Even though they have widely been utilized as a basic ingredient in Kevlar, Twaron, and other fabrics and applications, their intrinsic behavior under intense shock loading is still to be understood. In this work, we characterize the anisotropic shock response of PPTA crystals by performing reactive molecular dynamics simulations.

View Article and Find Full Text PDF

Scandium-doped aluminum nitride, AlScN, represents a new class of displacive ferroelectric materials with high polarization and sharp hysteresis along with high-temperature resilience, facile synthesizability and compatibility with standard CMOS fabrication techniques. The fundamental physics behind the transformation of unswitchable piezoelectric AlN into switchable Al-Sc-N ferroelectrics depends upon important atomic properties such as local structure, dopant distributions and the presence of competing mechanism of polarization switching in the presence of an applied electric-field that have not been understood. We computationally synthesize AlScN to quantify the inhomogeneity of Sc distribution and phase segregation, and characterize its crystal and electronic structure as a function of Sc-doping.

View Article and Find Full Text PDF

Phase-change materials are of great interest for low-power high-throughput storage devices in next-generation neuromorphic computing technologies. Their operation is based on the contrasting properties of their amorphous and crystalline phases, which can be switched on the nanosecond time scale. Among the archetypal phase change materials based on Ge-Sb-Te alloys, SbTe displays a fast and energy-efficient crystallization-amorphization cycle due to its growth-dominated crystallization and low melting point.

View Article and Find Full Text PDF

A thorough understanding of native oxides is essential for designing semiconductor devices. Here, we report a study of the rate and mechanisms of spontaneous oxidation of bulk single crystals of ZrSSe alloys and MoS. ZrSSe alloys oxidize rapidly, and the oxidation rate increases with Se content.

View Article and Find Full Text PDF

molecular dynamics simulations of shock loading on poly(-phenylene terephthalamide) (PPTA) reveal stress release mechanisms based on hydrogen bond preserving structural phase transformation (SPT) and planar amorphization. The SPT is triggered by [100] shock-induced coplanarity of phenylene groups and rearrangement of sheet stacking leading to a novel monoclinic phase. Planar amorphization is generated by [010] shock-induced scission of hydrogen bonds leading to disruption of polymer sheets, and -to- conformational change of polymer chains.

View Article and Find Full Text PDF

The excited-state hydride release from 10-methyl-9-phenyl-9,10-dihydroacridine (PhAcrH) was investigated using steady-state and time-resolved UV/vis absorption spectroscopy. Upon excitation, PhAcrH is oxidized to the corresponding iminium ion (PhAcr(+)), while the solvent (acetonitrile/water mixture) is reduced (52% of PhAcr(+) and 2.5% of hydrogen is formed).

View Article and Find Full Text PDF

The redox properties of model chromophores from the green fluorescent protein family are characterized computationally using density functional theory with a long-range corrected functional, the equation-of-motion coupled-cluster method, and implicit solvation models. The analysis of electron-donating abilities of the chromophores reveals an intricate interplay between the size of the chromophore, conjugation, resonance stabilization, presence of heteroatoms, and solvent effects. Our best estimates of the gas-phase vertical/adiabatic detachment energies of the deprotonated (i.

View Article and Find Full Text PDF