Publications by authors named "Subir Maji"

An established concept to create radical intermediates is photoexcitation of a catalyst to a higher energy intermediate, subsequently leading to a photoinduced electron transfer (PET) with a reaction partner. The known concept of consecutive photoinduced electron transfer (con-PET) leads to catalytically active species even higher in energy by the uptake of two photons. Generally speaking, increased photon uptake leads to a more potent reductant.

View Article and Find Full Text PDF

A novel heterometallic trinuclear cluster [CuMn(cpdp)(NO)(Cl)] () has been designed and synthesized by employing a molecular library approach that uses CuCl·2HO and Mn(NO)·4HO as inorganic metal salts and Hcpdp as a multifunctional organic scaffold (Hcpdp = ,'-bis[2-carboxybenzomethyl]-,'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol). This heterometallic cluster has emerged as an unusual ferromagnetic material and promising electrocatalyst for hydrogen evolution reaction (HER) in the domain of inorganic and materials chemistry. Crystal structure analysis establishes the structural arrangement of , revealing a butterfly-like topology with an unusual seven-coordinated Mn(II) center.

View Article and Find Full Text PDF

Mesoionic compounds, with positive and negative charges, are expected to have dual-site highest occupied molecular orbital (HOMO, donor) and lowest unoccupied molecular orbital (LUMO, acceptor) reactivity. Herein, we report a novel class of air-stable mesoionic N-heterocyclic thiones (mNHTs) synthesized from abnormal N-heterocyclic carbenes (aNHCs). DFT studies revealed a highly polarized exocyclic thione moiety and computed Fukui function analysis suggests the dual-site HOMO/LUMO reactivity of mNHTs predicting donor property at the negatively charged 'S' center while acceptor property at the cationic imidazole ring.

View Article and Find Full Text PDF

Low-valent main group species have been evolving as powerful alternatives to transition metals over the years due to their advantages such as low toxicity and high abundance. However, the inability of main group elements to mimic the redox-switching property of transition metals often limits their role as catalysts. Here, we demonstrate the use of a low-valent phosphorus(I) compound as an efficient metal-free catalyst for the synthesis of biologically relevant γ-butyrolactones through dual activation under ambient reaction conditions.

View Article and Find Full Text PDF

An extended class of organic multi-redox systems was derived from bicyclic(alkyl)amino carbenes (BICAACs). The highly-conjugated system undergoes a total of 4 redox events spanning a 1.8 V redox range.

View Article and Find Full Text PDF

An extended class of stable mesoionic N-heterocyclic imines (mNHIs), containing a highly polarized exocyclic imine moiety, were synthesized. The calculated proton affinities (PA) and experimentally determined Tolman electronic parameters (TEPs) reveal that these synthesized mNHIs have the highest basicity and donor ability among NHIs reported so far. The superior nucleophilicity of newly designed mNHIs was utilized in devising a strategy to incorporate CO as a bridging unit under reductive conditions to couple inert primary amides.

View Article and Find Full Text PDF

Herein, we report the synthesis of a benzimidazolylidene-stabilized borane adduct and its borenium ion. This borenium ion was used as a metal-free catalyst for hydrogenating various substituted quinoline N-heterocycles under ambient conditions. Furthermore, this method was utilized to synthesize two drug molecules: galipinine and angustureine.

View Article and Find Full Text PDF

A mesoionic N-heterocyclic olefin (mNHO) was introduced as a metal-free catalyst for the reductive functionalization of CO leading to consecutive double -methylation of primary amines in the presence of 9-borabicyclo[3.3.1]nonane (9-BBN).

View Article and Find Full Text PDF

Herein we report an abnormal N-heterocyclic carbene catalyzed dehydration of primary amides in the presence of a silane. This process bypasses the energy demanding 1,2-siloxane elimination step usually required for metal/silane catalyzed reactions. A detailed mechanistic cycle of this process has been proposed based on experimental evidence along with computational study.

View Article and Find Full Text PDF