Background: Mast cells are involved in allergic inflammation by secreting histamine, proteases and several cytokines, including interleukin (IL)-6, tumor necrosis factor-alpha (TNF-alpha) and IL-8. Certain histamine-1 receptor antagonists, such as azelastine present in the ophthalmic solution Optivar, have been reported to inhibit histamine and tryptase secretion, but its effect on inflammatory cytokine release from normal human umbilical cord blood-derived cultured mast cells (hCBMC) are not well known.
Methods: We investigated the effect of azelastine on the secretion of IL-6, TNF-alpha and IL-8 from hCBMC, as well as its possible mechanism of action.
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis through release of corticotropin releasing factor (CRF), leading to production of glucocorticoids that down regulate immune responses. However, acute stress via CRF also has pro-inflammatory effects. We previously showed that acute stress increases rat blood-brain barrier (BBB) permeability, an effect involving brain mast cells and CRF, as it was absent in W/W(v) mast cell-deficient mice and was blocked by the CRF-receptor antagonist, Antalarmin.
View Article and Find Full Text PDFStress activates the hypothalamic-pituitary-adrenal axis through release of corticotropin releasing hormone (CRH), leading to production of glucocorticoids that down-regulate immune responses. Acute stress, however, also has proinflammatory effects that seem to be mediated through the activation of mast cells. Stress and mast cells have been implicated in the pathophysiology of various inflammatory conditions, including some in the central nervous system, such as multiple sclerosis in which disruption of the blood-brain barrier (BBB) precedes clinical symptoms.
View Article and Find Full Text PDF