Publications by authors named "Subhasish Dey"

This study presents a comprehensive dataset comprising multiple data packages derived from laboratory experiments on steady and unsteady hydraulic jumps interacting with a large-scale Gaussian-shaped bed obstacle in an open-channel flume. The primary objective was to accurately measure the impact of hydraulic jump on the free surface and the bed pressure along the obstacle, ensuring the transferability of the results. A multi-process method was followed: designed experiments were recorded, images were postprocessed, and water level data were digitalized.

View Article and Find Full Text PDF

In this article, we explore the submarine channel formation driven by the interaction of turbidity currents with an erodible bed. The theoretical analysis considers the three-dimensional continuity and momentum equations of the fluid phase, and the advection-diffusion and Exner equations of the solid phase. The governing equations are linearized by imposing periodic perturbations on the base flow.

View Article and Find Full Text PDF

Background: Cranial or craniofacial fibrous dysplasia (CFD) is a rare entity which most often presents with either incidental finding or with pain/cosmetic disfigurement or visual/hearing problems. Multidisciplinary treatment with close follow-up or medical management/surgery is options. Management of these lesions can often give satisfying results.

View Article and Find Full Text PDF

In this paper, we explore the mega riverbed-patterns, whose longitudinal and vertical length dimensions scale with a few channel widths and the flow depth, respectively. We perform the stability analyses from both linear and weakly nonlinear perspectives by considering a steady-uniform flow in an erodible straight channel comprising a uniform sediment size. The mathematical framework stands on the dynamic coupling between the depth-averaged flow model and the particle transport model including both bedload and suspended load via the Exner equation, which drives the pattern formation.

View Article and Find Full Text PDF

This review article, dedicated to the bicentenary celebration of Sir George Gabriel Stokes' birthday, presents the state-of-the-science of terminal fall velocity, highlighting his rich legacy from the perspective of fluvial hydraulics. It summarizes the fluid drag on a particle and the current status of the drag coefficient from both the theoretical and empirical formulations, highlighting the three major realms-Stokesian, transitional and Newtonian realms. The force system that drives the particle motion falling through a fluid is described.

View Article and Find Full Text PDF

Bed particle saltation in turbulent wall-shear flow remains an intriguing phenomenon in applied hydro-dynamics. In this review, we report the current state of the art of bed particle saltation in turbulent wall-shear flow, highlighting the physical characteristics of bed particle saltation and its mathematical modelling. A critical appraisal of the mechanics of bed particle saltation is presented thorough ample experimental evidence.

View Article and Find Full Text PDF

The field of harvesting electrical energy from ambient vibration has grown with rapid interest. Perpetual source of electrical energy can be extracted from structural vibrations. The paper deals with a technology for scavenging electricity from vibration using iron-gallium alloy.

View Article and Find Full Text PDF

Cobb syndrome is an exceedingly rare clinical condition defined by the presence of a vascular skin nevus and an angioma in the spinal canal at the same metamere. We report the case of a 14-year-old boy who presented with sudden onset paraplegia. Physical examination showed port-wine stains over buttock and thigh.

View Article and Find Full Text PDF

Based on the Reynolds averaged Navier-Stokes (RANS) equations and the time-averaged continuity equation, a theory of turbulent shear flow over an undulating sand bed is developed addressing the instability criterion of plane sand beds in free-surface flows leading to the formation of sand waves. In the analysis, the integration of RANS equations leads to generalized Saint Venant equations, in which the time-averaged streamwise velocity is characterized by a power law obtained from turbulence closure, treating the curvilinear streamlines by the Boussinesq approximation. As a consequence, the modified pressure distribution has a departure from the traditionally linear hydrostatic pressure distribution.

View Article and Find Full Text PDF