Publications by authors named "Subhashini Bolisetty"

In previously published work, we elucidated the role of cutaneous arsenical exposure in promoting acute kidney injury (AKI) in adult healthy mice. Here, we determine whether pre- existing chronic kidney disease (CKD) increases the severity of AKI. Following exposure to aristolochic acid (AA) (a nephrotoxic phytochemical in humans), mice manifested classical markers of CKD, including robust interstitial fibrosis and loss in kidney function.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the long-term effects of acute kidney injury (AKI) caused by bilateral ischemia-reperfusion injury (BIRI) on kidney lymphatic dynamics in mice over a period of up to 9 months.
  • While kidney function initially recovered, the researchers found ongoing tissue damage and inflammation through histological analysis, indicating lasting effects of the injury.
  • The study highlights distinct phases of lymphatic responses with unique transcriptional signatures, immune cell changes, and the formation of new lymphatic structures, suggesting a critical link between AKI and the development of chronic kidney disease.
View Article and Find Full Text PDF

Background: Adult muscle-resident myogenic stem cells, satellite cells (SCs), that play non-redundant role in muscle regeneration, are intrinsically impaired in Duchenne muscular dystrophy (DMD). Previously we revealed that dystrophic SCs express low level of anti-inflammatory and anti-oxidative heme oxygenase-1 (HO-1, HMOX1). Here we assess whether targeted induction of HMOX1 affect SC function and alleviates hallmark symptoms of DMD.

View Article and Find Full Text PDF

Sepsis-associated acute kidney injury (SA-AKI) is a key contributor to the life-threatening sequelae attributed to sepsis. Mechanistically, SA-AKI is a consequence of unabated myeloid cell activation and oxidative stress that induces tubular injury. Iron mediates inflammatory pathways directly and through regulating the expression of myeloid-derived ferritin, an iron storage protein comprising ferritin light (FtL) and ferritin heavy chain (FtH) subunits.

View Article and Find Full Text PDF
Article Synopsis
  • Szeto–Schiller-31 (SS-31) provides protection against mitochondrial dysfunction, particularly during acute kidney injury (AKI), and requires the function of a protein called phospholipid scramblase 3 (PLSCR3).
  • Researchers performed extensive screenings and experiments to identify SS-31's targets, concluding that PLSCR3 is crucial for its protective effects while noting that deleting the PLSCR3 gene negates these benefits during AKI.
  • The study highlights PLSCR3's role in kidney function and its increased expression in AKI patients, suggesting its importance as a potential therapeutic target for kidney protection.
View Article and Find Full Text PDF

Ferroptosis is a druggable, iron-dependent form of cell death that is characterized by lipid peroxidation but has received little attention in lupus nephritis. Kidneys of lupus nephritis patients and mice showed increased lipid peroxidation mainly in the tubular segments and an increase in Acyl-CoA synthetase long-chain family member 4, a pro-ferroptosis enzyme. Nephritic mice had an attenuated expression of SLC7A11, a cystine importer, an impaired glutathione synthesis pathway, and low expression of glutathione peroxidase 4, a ferroptosis inhibitor.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a serious complication of rhabdomyolysis that significantly impacts survival. Myoglobin released from the damaged muscle accumulates in the kidney, causing heme iron-mediated oxidative stress, tubular cell death, and inflammation. In response to injury, myeloid cells, specifically neutrophils and macrophages, infiltrate the kidneys, and mediate response to injury.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of renal lymphatic networks, specifically lymphangiogenesis (LA), in the context of acute kidney injury caused by cisplatin.
  • The use of MAZ51, a selective VEGFR3 inhibitor, resulted in worse kidney damage, higher levels of inflammation, and increased cell death in a model of cisplatin nephrotoxicity compared to untreated controls.
  • Findings indicate that LA might protect against kidney damage during cisplatin treatment, suggesting that targeting LA could lead to new therapeutic strategies for acute kidney injury.
View Article and Find Full Text PDF

Despite the recent launch of tolvaptan, the search for safer polycystic kidney disease (PKD) drugs continues. Ciclopirox (CPX) or its olamine salt (CPX-O) is contained in a number of commercially available antifungal agents. CPX is also reported to possess anticancer activity.

View Article and Find Full Text PDF

Sepsis associated acute kidney injury (SA-AKI) is a common clinical syndrome that occurs among hospitalized patients and significantly impacts mortality. Furthermore, survival after sepsis is intricately dependent on recovery of kidney function. In this review, we discuss the role of iron imbalance in mediating the pathogenic events during sepsis.

View Article and Find Full Text PDF

The proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity.

View Article and Find Full Text PDF

Ferritins are evolutionarily conserved proteins that regulate cellular iron metabolism. It is the only intracellular protein that is capable of storing large quantities of iron. Although the ratio of different subunits determines the iron content of each ferritin molecule, the exact mechanism that dictates organization of these subunits still is unclear.

View Article and Find Full Text PDF

Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes with significant attributable morbidity and mortality. The disturbing trend of increasing incidence and prevalence of these clinical disorders highlights the urgent need for better understanding of the underlying mechanisms that are involved in pathogenesis of these conditions. Lymphangiogenesis and its involvement in various inflammatory conditions is increasingly recognized while its role in AKI and CKD remains to be fully elucidated.

View Article and Find Full Text PDF

Malaria, the disease caused by spp. infection, remains a major global cause of morbidity and mortality. Host protection from malaria relies on immune-driven resistance mechanisms that kill However, these mechanisms are not sufficient per se to avoid the development of severe forms of disease.

View Article and Find Full Text PDF

Despite the prevalence and recognition of its detrimental impact, clinical complications of sepsis remain a major challenge. Here, we investigated the effects of myeloid ferritin heavy chain (FtH) in regulating the pathogenic sequelae of sepsis. We demonstrate that deletion of myeloid FtH leads to protection against lipopolysaccharide-induced endotoxemia and cecal ligation and puncture (CLP)-induced model of sepsis as evidenced by reduced cytokine levels, multi-organ dysfunction and mortality.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a devastating clinical condition affecting at least two-thirds of critically ill patients, and, among these patients, it is associated with a greater than 60% risk of mortality. Kidney mononuclear phagocytes (MPs) are implicated in pathogenesis and healing in mouse models of AKI and, thus, have been the subject of investigation as potential targets for clinical intervention. We have determined that, after injury, F4/80hi-expressing kidney-resident macrophages (KRMs) are a distinct cellular subpopulation that does not differentiate from nonresident infiltrating MPs.

View Article and Find Full Text PDF

Macrophages polarize into heterogeneous proinflammatory M1 and antiinflammatory M2 subtypes. Heme oxygenase 1 (HO-1) protects against inflammatory processes such as ischemia-reperfusion injury (IRI), organ transplantation, and atherosclerosis. To test our hypothesis that HO-1 regulates macrophage polarization and protects against IRI, we generated myeloid-specific HO-1-knockout (mHO-1-KO) and -transgenic (mHO-1-Tg) mice, with deletion or overexpression of HO-1, in various macrophage populations.

View Article and Find Full Text PDF

Following myocardial infarction (MI), overactive inflammation remodels the left ventricle (LV) leading to heart failure coinciding with reduced levels of 15-epi-Lipoxin A (15-epi LXA). However, the role of 15-epi LXA in post-MI acute inflammatory response and resolving phase is unclear. We hypothesize that liposomal fusion of 15-epi-LXA (Lipo-15-epi-LXA) or free 15-epi-LXA will expedite the resolving phase in post-MI inflammation.

View Article and Find Full Text PDF

Sex and age influence susceptibility to acute kidney injury (AKI), with young females exhibiting lowest incidence. In these studies, we investigated mechanisms which may underlie the sex/age-based dissimilarities. Cisplatin (Cp)-induced AKI resulted in morphological evidence of injury in all groups.

View Article and Find Full Text PDF

Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death, which contributes to damage in models of acute kidney injury (AKI). Heme oxygenase-1 (HO-1) is a cytoprotective enzyme induced in response to cellular stress, and is protective against AKI because of its antiapoptotic and anti-inflammatory properties. However, the role of HO-1 in regulating ferroptosis is unclear.

View Article and Find Full Text PDF

A common clinical condition, acute kidney injury (AKI) significantly influences morbidity and mortality, particularly in critically ill patients. The pathophysiology of AKI is complex and involves multiple pathways, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Recent evidence suggests that a single insult to the kidney significantly enhances the propensity to develop chronic kidney disease.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is one of the leading causes of in-hospital morbidity and mortality, particularly in critically ill patients. Although our understanding of AKI at the molecular level remains limited due to its complex pathophysiology, recent advances in both quantitative and spatial mass spectrometric approaches offer new opportunities to assess the significance of renal metabolomic changes in AKI models. In this study, we evaluated lipid changes in early ischemia-reperfusion (IR)-related AKI in mice by using sequential window acquisition of all theoretical spectra (SWATH)-mass spectrometry (MS) lipidomics.

View Article and Find Full Text PDF

Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that catalyzes the breakdown of heme to biliverdin, carbon monoxide, and iron. The beneficial effects of HO-1 expression are not merely due to degradation of the pro-oxidant heme but are also credited to the by-products that have potent, protective effects, including antioxidant, anti-inflammatory, and prosurvival properties. This is well reflected in the preclinical animal models of injury in both renal and nonrenal settings.

View Article and Find Full Text PDF

Aims: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1).

View Article and Find Full Text PDF

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known genetic cause of Parkinson's disease, and LRRK2 is also linked to Crohn's and Hansen's disease. LRRK2 is expressed in many organs in mammals but is particularly abundant in the kidney. We find that LRRK2 protein is predominantly localized to collecting duct cells in the rat kidney, with much lower expression in other kidney cells.

View Article and Find Full Text PDF