Osteoporosis is one of the detrimental effects of spinal cord injury (SCI), leading to bone loss. It has already been established that superparamagnetic nanoparticles when exposed to an external magnetic field (MF) show strong magnetisation and promote locomotor recovery. The aim of the present study is to explore the role of magnetised nanoparticles in ameliorating SCI-induced osteoporosis.
View Article and Find Full Text PDFInflammation in ulcerative colitis is typically restricted to the mucosal layer of distal gut. Disrupted mucus barrier, coupled with microbial dysbiosis, has been reported to occur prior to the onset of inflammation. Here, we show the involvement of vesicular trafficking protein Rab7 in regulating the colonic mucus system.
View Article and Find Full Text PDFA substantial percentage of kidney transplant recipients show transplant failure due to BK virus-induced nephropathy. This can be clinically controlled by the rapid and timely detection of BK virus infection in immune-compromised patients. We report a rapid (two hours from sample collection, processing, and detection), cost-effective (< 2$), highly sensitive and BKV-specific nanoLAMP (loop-mediated isothermal amplification) diagnostic methodology using novel primers and gold nanoparticles complex-based visual detection.
View Article and Find Full Text PDFMany drugs were recommended as antiviral agents for infection control and effective therapy to reduce the mortality rate for COVID-19 patients. Hydroxychloroquine (HCQ), an antimalarial drug, has been controversially recommended for prophylactic use in many countries, including India, to control SARS-CoV-2 infections. We have explored the effect of prophylactic HCQ from the cells of bronchoalveolar lavage fluids from COVID-19-induced acute respiratory distress syndrome patients to determine the level of infection and ultrastructural alterations in the ciliated epithelium, type II pneumocytes, alveolar macrophages, neutrophils, and enucleated granulocytes.
View Article and Find Full Text PDFBackground: SARS-CoV-2 was reported to induce cell fusions to form multinuclear syncytia that might facilitate viral replication, dissemination, immune evasion, and inflammatory responses. In this study, we have reported the types of cells involved in syncytia formation at different stages of COVID-19 disease through electron microscopy.
Methods: Bronchoalveolar fluids from the mild (n = 8, SpO2 > 95%, no hypoxia, within 2-8 days of infection), moderate (n = 8, SpO2 90% to ≤ 93% on room air, respiratory rate ≥ 24/min, breathlessness, within 9-16 days of infection), and severe (n = 8, SpO2 < 90%, respiratory rate > 30/min, external oxygen support, after 17th days of infection) COVID-19 patients were examined by PAP (cell type identification), immunofluorescence (for the level of viral infection), scanning (SEM), and transmission (TEM) electron microscopy to identify the syncytia.
Background: Fragment reattachment is the recommended treatment modality in uncomplicated crown fractures. There is a paucity of literature regarding the mechanisms responsible for increased resistance to fracture after fragment rehydration in such cases. Hence, the aim of this proof-of-concept study was to decipher the microscopic changes in the penetration characteristics of resin in tooth fragments after different rehydration protocols.
View Article and Find Full Text PDFIn this study, we examined the cellular infectivity and ultrastructural changes due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the various cells of bronchoalveolar fluid (BALF) from intubated patients of different age groups (≥60 years and <60 years) and with common comorbidities such as diabetes, liver and kidney diseases, and malignancies. BALF of 79 patients (38 cases >60 and 41 cases <60 years) were studied by light microscopy, immunofluorescence, scanning, and transmission electron microscopy to evaluate the ultrastructural changes in the ciliated epithelium, type II pneumocytes, macrophages, neutrophils, eosinophils, lymphocytes, and anucleated granulocytes. This study demonstrated relatively a greater infection and better preservation of subcellular structures in these cells from BALF of younger patients (<60 years compared with the older patients (≥60 years).
View Article and Find Full Text PDFMethods Mol Biol
March 2022
Surface ultrastructures of giant cells (GCs) may help distinguish an aggressive tumor from an indolent giant cell tumor (GCT). This protocol describes a better way for ultrastructural surface imaging of GC from GCT of bone by scanning electron microscope (SEM). Fresh GCT samples collected in Dulbecco's modified Eagle medium (DMEM) are thoroughly washed to remove the blood and treated with collagenase to isolate the GCs.
View Article and Find Full Text PDFObjectives: To study the presence of biofilms in patients of chronic otitis media (COM)-active squamosal disease and to evaluate the microflora and clinical impact of biofilms.
Methods: A total of 35 patients suffering from COM - active squamosal disease was studied. Cholesteatoma sample was collected at the time of mastoid surgery and the same was used to image for biofilms by scanning electron microscope.
Pulmonary hypertension (PH) is a severe cardiopulmonary disease characterized by complement-dependent, fibroblast-induced perivascular accumulation and proinflammatory activation of macrophages. We hypothesized that, in PH, nanoscale-sized small extracellular vesicles (sEVs), released by perivascular/adventitial fibroblasts, are critical mediators of complement-dependent proinflammatory activation of macrophages. Pulmonary adventitial fibroblasts were isolated from calves with severe PH (PH-Fibs) and age-matched controls (CO-Fibs).
View Article and Find Full Text PDFObjective: Overnight high-dose dexamethasone suppression test (ON-HDDST) is a simple test to localize the source of ACTH in patients with ACTH-dependent Cushing's syndrome (CS). However, previous studies have reported its varying accuracy. We studied the utility of ON-HDDST in diagnosing Cushing's disease (CD) in a series of patients with CD and ectopic ACTH syndrome (EAS).
View Article and Find Full Text PDFGiant cell tumor (GCT) of bone is a common benign lesion that causes significant morbidity due to the failure of modern medical and surgical treatment. Surface ultra-structures of giant cells (GCs) may help in distinguishing aggressive tumors from indolent GC lesions. This study aimed to standardize scanning electron microscopic (SEM) imaging of GC from GCT of bone.
View Article and Find Full Text PDFBrimonidine, an anti-glaucoma medicine, acts as an adrenergic agonist which decreases the synthesis of aqueous humour and increases the amount of drainage through Schlemm's canal and trabecular meshwork, but shows dose-dependent (0.2% solution thrice daily) toxicity. To reduce the side effects and improve the efficacy, brimonidine was nanoencapsulated on ultra-small-sized chitosan nanoparticles (nanobrimonidine) (28 ± 4 nm) with 39% encapsulation efficiency, monodispersity, freeze-thawing capability, storage stability, and 2% drug loading capacity.
View Article and Find Full Text PDFTargeted nano-delivery vehicles were developed from genetically modified Cowpea chlorotic mottle virus (CCMV) capsid by ligands bioconjugation for efficient drug delivery in cancer cells. RNA binding (N 1-25aa) and β-hexamer forming (N 27-41aa) domain of capsid was selectively deleted by genetic engineering to achieve the efficient in vitro assembly without natural cargo. Two variants of capsids were generated by truncating 41 and 26 amino acid from N terminus (NΔ41 and NΔ26) designated as F and F respectively.
View Article and Find Full Text PDFAmyloid aggregates display striking features of detergent stability and self-seeding. Human serum albumin (HSA), a preferred drug-carrier molecule, can also aggregate in vitro. So far, key amyloid properties of stability against ionic detergents and self-seeding, are unclear for HSA aggregates.
View Article and Find Full Text PDFBackground: Elucidation of molecular mechanism of silver nanoparticles (SNPs) biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution) of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis.
View Article and Find Full Text PDFThe targeted delivery of therapeutic peptide by nanocarriers systems requires the knowledge of interactions of nanomaterials with the biological environment, peptide release, and stability of therapeutic peptides. Therapeutic application of nanoencapsulated peptides are increasing exponentially and >1000 peptides in nanoencapsulated form are in different clinical/trial phase. This review covers current scenario of therapeutic protein and peptides encapsulation on polymer to metallic nanocarriers including methods of protein encapsulation, peptide bioconjugation on nanoparticles, stability enhancement of encapsulated proteins and its biomedical applications.
View Article and Find Full Text PDFThe plant isolated antioxidant quercitrin has been encapsulated on poly-d,l-lactide (PLA) nanoparticles by solvent evaporation method to improve the solubility, permeability and stability of this molecule. The size of quercitrin-PLA nanoparticles is 250±68nm whereas that PLA nanoparticles is 195 ± 55nm. The encapsulation efficiency of nanoencapsulated quercitrin evaluated by HPLC and antioxidant assay is 40%.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2010
The antioxidant molecule quercetin has been encapsulated on poly-D,L-lactide (PLA) nanoparticles by solvent evaporation method for the improvement of its poor aqueous solubility and stability. The surface morphology and average size of PLA and quercetin loaded PLA nanoparticles are 170+/-25 and 130+/-30 nm respectively. The antioxidant activities of the PLA encapsulated quercetin nanomedicine are identical to free quercetin.
View Article and Find Full Text PDFThe effect of deglycosylation on the physiological and functional organization of milin was studied under different denaturizing conditions. Trifluoromethanesulfonic acid mediated deglycosylation resulted in insoluble milin, which was found to be soluble only in 1.5 M GuHCl with native-like folded structure.
View Article and Find Full Text PDFKinetically stable homodimeric serine protease milin reveals high conformational stability against temperature, pH and chaotrope [urea, guanidine hydrochloride (GuHCl) and guanidine isothiocynate (GuSCN)] denaturation as probed by circular dichroism, fluorescence, differential scanning calorimetry and activity measurements. GuSCN induces complete unfolding in milin, whereas temperature, urea and GuHCl induce only partial unfolding even at low pH, through several intermediates with distinct characteristics. Some of these intermediates are partially active (viz.
View Article and Find Full Text PDFSpectroscopic, calorimetric, and proteolytic methods were utilized to evaluate the stability of the kinetically stable, differentially glycosylated, dimeric serine protease milin as a function of pH (1.0-11.0), temperature, urea, and GuHCl denaturation in presence of 8 M urea at pH 2.
View Article and Find Full Text PDFMilin, a potent molluscicide from the latex of Euphorbia milii, holds promise in medicinal biochemistry. Electrophoresis, size exclusion chromatography, mass spectrometry and other biochemical characteristics identify milin as a homodimeric, plant subtilisin-like serine protease, the first of its kind. The subunits of milin are differentially glycosylated affecting dimer association, solubility and proteolytic activity.
View Article and Find Full Text PDF