Publications by authors named "Subhankar P Mandal"

A series of novel symmetrical and asymmetrical dihydropyridines (HD 1-15) were designed, subjected to ADMET prediction, synthesized, analyzed by IR, NMR, Mass analytical techniques and evaluated against epidermal growth factor receptor (EGFR) as inhibitors against Breast cancer. The results of predicted ADMET studies demonstrated the drug-likeness properties of the reported compounds. The cytotoxicity assessment of the synthesized compounds revealed that all of them showed good activity (IC ranging from 16.

View Article and Find Full Text PDF

The spike (S) glycoprotein and nucleocapsid (N) proteins are the crucial pathogenic proteins of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) virus during its interaction with the host. Even FDA-approved drugs like dexamethasone and grazoprevir are not able to curb the viral progression inside the host and are reported with adverse effects on body metabolism. In this context, we aim to report corilagin a novel, potential dual inhibitor of S and N proteins from The bioactive compounds of were subjected to a series of computational investigations including molecular docking simulations, molecular dynamics (MD) simulations, binding free energy calculations, and PASS pharmacological analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Severe steroid-resistant asthma (SSR) patients do not respond to corticosteroids due to diverse factors like genetic variations and lack of understanding about the underlying molecular mechanisms.
  • Limited research exists on effective therapeutic targets for SSR, highlighting the need for novel drug delivery systems (NDDS) to improve treatment options.
  • Key signaling pathways and immunological phenotypes related to SSR are explored, with a focus on novel therapeutic strategies, including the potential of nanomedicine formulations for better retention of anti-asthmatic drugs.
View Article and Find Full Text PDF

A novel series of benzothiazole-rhodanine derivatives (A1-A10) were designed and synthesized, with the aim of developing possible antidiabetic agents and the spectral characterization of these compounds was done using infrared spectroscopy (IR), proton-nuclear magnetic resonance ( H-NMR), carbon-nuclear magnetic resonance (C -NMR), and high resolution mass spectroscopy (HR-MS) techniques. In vitro hypoglycemic potential of the compounds was evaluated by performing α-amylase and α-glucosidase enzyme inhibitory assays. In addition, these compounds were subjected to in silico analysis.

View Article and Find Full Text PDF

Introduction: Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are highly effective in treating insulin resistance. However, associated side effects such as weight gain due to increase in adipogenesis and lipogenesis hinder their clinical use. The aim of the study was to design and synthesize novel partial PPARγ agonists with weaker lipogenic effect in adipocytes and enhanced glucose transporter 4 (GLUT4) translocation stimulatory effect in skeletal muscle cells.

View Article and Find Full Text PDF

The present study has planned to evaluate the neuroprotective activity of two novel glitazones in a neuroinflammatory rat model. Two novel glitazones were selected from an in-house virtual library of glitazones based on their docking scores against peroxisome proliferator-activated receptor-gamma (PPAR-γ) protein and other parameters studied in computational studies. Initially, an acute oral toxicity study was carried out for glitazones in rats to assess the toxicity profile and to determine the therapeutic range for neuroprotective evaluation.

View Article and Find Full Text PDF

Enantiomeric resolution and molecular docking studies of meclizine hydrochloride on polysaccharide-based chiral stationary phase comprising cellulose tris(4-methylbenzoate) chiral selector (150 × 4.6 mm, 3.0 μm) were presented.

View Article and Find Full Text PDF

Background: A series of novel 5-substituted benzylidene rhodanine derivatives using four different amines were designed based on our previously developed CoMSIA (Comparative molecular similarity indices analysis) model for the anticancer activity.

Methods: The designed rhodanines were synthesized via dithiocarbamate formation, cyclization and Knoevenagel condensation. The structures of the synthesized compounds were confirmed and analyzed by spectral studies.

View Article and Find Full Text PDF

Background: An alarming requirement for finding newer antidiabetic glitazones as agonists to PPARγ are on its utmost need from past few years as the side effects associated with the available drug therapy is dreadful. In this context, herein, we have made an attempt to develop some novel glitazones as PPARγ agonists, by rational and computer aided drug design approach by implementing the principles of bioisosterism. The designed glitazones are scored for similarity with the developed 3D pharmacophore model and subjected for docking studies against PPARγ proteins.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session283p7v5m17cb23hucb9esji820de7oh7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once