The chest radiograph (CXR) is the most frequently performed radiological examination worldwide. The increasing volume of CXRs performed in hospitals causes reporting backlogs and increased waiting times for patients, potentially compromising timely clinical intervention and patient safety. Implementing computer-aided detection (CAD) artificial intelligence (AI) algorithms capable of accurate and rapid CXR reporting could help address such limitations.
View Article and Find Full Text PDFIn medical practice, chest X-rays are the most ubiquitous diagnostic imaging tests. However, the current workload in extensive health care facilities and lack of well-trained radiologists is a significant challenge in the patient care pathway. Therefore, an accurate, reliable, and fast computer-aided diagnosis (CAD) system capable of detecting abnormalities in chest X-rays is crucial in improving the radiological workflow.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Recent developments in ultra-high-throughput microscopy have created a new generation of cell classification methodologies focused solely on image-based cell phenotypes. These image-based analyses enable morphological profiling and screening of thousands or even millions of single cells at a fraction of the cost. They have been shown to demonstrate the statistical significance required for understanding the role of cell heterogeneity in diverse biologists.
View Article and Find Full Text PDFBright-field microscopy (BFM) encrypts the optical transillumination profile of the transmitted light attenuated by the complex micro-structural tissue convolutions, manifested by the dense and compact regions of the specimen under examination. The connotations of idiosyncratic tissue interaction dynamics with the onset of pre-cancerous activity are encoded in the BFM acquired oral mucosa histopathological images (OMHI). In the present study, our analysis is focused on the sub-epithelium region of the oral mucosa, which has high clinical significance but sparsely explored in the literature from the textural domain.
View Article and Find Full Text PDF