Aim: Angiotensin II (AngII) is known to play a significant part in the development of breast cancer by triggering cell propagation of breast cancer, tumor angiogenesis, and regulating tumor invasion and cell migration. AngII arbitrates its action via two G-protein-coupled receptors, AngII type 1 receptor (AT1) and AngII type 2 receptor (AT2). Overexpression of the AT1 receptor in breast cancer cells seems to promote tumor growth and angiogenesis, thus targeting the AT1 receptor using AngII peptide would facilitate the detection of breast carcinoma.
View Article and Find Full Text PDFBackground: Myocardial perfusion imaging (MPI) is one of the most commonly performed investigations in nuclear medicine procedures. Due to the longer half-life of the emerging positron emitter copper-64 and its availability from low energy cyclotron, together with its well-known coordination chemistry, we have synthesized Cu-labeled NOTA- and Cu-NOTAM-rhodamine conjugates as potential cardiac imaging agents using PET.
Results: Cu-NOTA- and Cu-NOTAM-rhodamine conjugates were synthesized using a traightforward and one-step simple reaction.
The expansion of novel and potent tumor receptor binding peptides is a promising approach for the precise targeting of various cancer. Leuprolide is a 9-residue peptide analog of gonadotropin-releasing hormone and is extensively used in the treatment of sex hormone-dependent tumors, including prostate, breast, and ovarian cancer. This preclinical study was undertaken to prepare a new radiolabeled leuprolide peptide for the detection of breast carcinoma.
View Article and Find Full Text PDFIntroduction: An efficient and cost-effective synthesis of the metal chelating agents that couple to tumor-targeting peptides is required to enhance the process of preclinical research toward the clinical translation of molecular imaging agents. DOTA is one of the most widely used macrocyclic ligands for the development of new metal-based imaging and therapeutic agents owing to its ability to form stable and inert complexes under physiological conditions. Although solid-phase synthesis compatible DOTA-tris-(t-Bu ester) is a commercial product, it is expensive and contain chemical impurities.
View Article and Find Full Text PDFThe human epidermal growth factor receptor 2 (HER2) represents one of the most studied tumor-associated antigens for cancer immunotherapy. The receptors for HER2 are overexpressed in various human cancers, such as breast and ovarian cancer. The relatively low expression of this antigen on normal tissues makes it a clinically useful molecular target for tumor imaging and targeted therapy.
View Article and Find Full Text PDFBackground/aim: The human epidermal growth factor receptor (HER2) is considered as one of the most well-characterized tumor-associated antigens for cancer therapy and plays an important role in the growth and progression of breast cancer. Overexpression of HER2 in various cancers and the availability of its extracellular region makes it a clinically useful target for the development of tumor-antigen specific agents. In this study, we have prepared a HER2-targeted hybrid peptide as a single-photon emission computed tomography (SPECT) imaging probe and evaluated its tumor targeting potential in subcutaneous HER2-positive breast cancer xenograft models.
View Article and Find Full Text PDFPurpose: The goal of this study was to prepare a synthetic peptide derived from breast tumor associated antigen and to evaluate its potential as a breast cancer imaging agent.
Methods: A mucin 1 derived peptide was synthesized by solid-phase peptide synthesis and examined for its radiochemical and metabolic stability. The tumor cell binding affinity of (99m)Tc-MUC1 peptide was investigated on MUC1-positive T47D and MCF7 breast cancer cell lines.
Myocardial perfusion imaging is one of the most commonly performed investigations in nuclear medicine studies. Due to the clinical importance of [(18)F]-fluoro-2-deoxy-D-glucose ([(18)F]-FDG) and its availability in almost every PET center, a new radiofluorinated [(18)F]-FDG-rhodamine conjugate was synthesized using [(18)F]-FDG as a prosthetic group. In a convenient and simple one-step radiosynthesis, [(18)F]-FDG-rhodamine conjugate was prepared in quantitative radiochemical yields, with total synthesis time of nearly 20 min and radiochemical purity of greater than 98%, without the need for HPLC purification, which make these approaches amenable for automation.
View Article and Find Full Text PDFObjectives: Among the many clinically relevant peptide receptor systems, bombesin (BN) receptors have attracted enormous attraction due to their overexpression in various frequently occurring human tumors including breast and prostate, thus making such receptors promising targets with radiolabeled BN analogs. The present study describes the preparation and evaluation of a series of new BN derivatives as potential tumor imaging agents.
Methods: Several new BN derivatives with the common structure MAG(3)-X-BN(1-14 or 6-14), where X=Asp or Asp-Asp, were synthesized by solid-phase peptide synthesis.
Conjugation of the cytotoxic drugs to receptor-binding peptides is an attractive approach for the targeted delivery of cytotoxic peptide conjugates to tumor cells. In an attempt to develop an efficient peptide-based radiopharmaceutical for targeting bombesin (BN) receptor-expressing tumors (i.e.
View Article and Find Full Text PDFHER2/neu and MUC1-based synthetic peptides were prepared and evaluated in an effort to develop peptide-based radiopharmaceuticals derived from tumor-associated-antigens for the detection of breast cancer. The receptors for HER2/neu and MUC1 are overexpressed in various human cancers, such as breast and ovarian cancer. The relatively low expression of these antigens on normal tissues makes them attractive targets for tumor imaging.
View Article and Find Full Text PDFThe cell-membrane folic acid (FA) receptors are known to be responsible for cellular accumulation of FA and FA analogs, such as methotrexate (MTX), and are overexpressed on several tumor cells. Folate, as well as antifolates (i.e.
View Article and Find Full Text PDFSmall synthetic receptor-binding peptides are the agents of choice for diagnostic imaging and radiotherapy of cancers due to their favorable pharmacokinetics. Molecular modification techniques permit the synthesis of a variety of bioactive peptides with chelating groups, without compromising biological properties. Various techniques have been developed that allow efficient and site-specific labeling of peptides with clinically useful radionuclides such as (99m)Tc, (123)I, (111)In, and (18)F.
View Article and Find Full Text PDF