Label-free optical detection of biomolecules is currently limited by a lack of specificity rather than sensitivity. To exploit the much more characteristic refractive index dispersion in the mid-infrared (IR) regime, we have engineered three-dimensional IR-resonant silicon micropillar arrays (Si-MPAs) for protein sensing. By exploiting the unique hierarchical nano- and microstructured design of these Si-MPAs attained by CMOS-compatible silicon-based microfabrication processes, we achieved an optimized interrogation of surface protein binding.
View Article and Find Full Text PDFDielectrophoresis (DEP) is a nondestructive and noninvasive method which is favorable for point-of-care medical diagnostic tests. This technique exhibits prominent relevance in a wide range of medical applications wherein the miniaturized platform for manipulation (immobilization, separation or rotation), and detection of biological particles (cells or molecules) can be conducted. DEP can be performed using advanced planar technologies, such as complementary metal-oxide-semiconductor (CMOS) through interdigitated capacitive biosensors.
View Article and Find Full Text PDFJ Anaesthesiol Clin Pharmacol
January 2018
Background And Aims: Laparoscopic surgeries cause an increase in intracranial pressure (ICP) after creation of pneumoperitoneum. Sonographically measured, optic nerve sheath diameter (ONSD) correlates well with changes in ICP. Dexmedetomidine (Dex), an α agonist is extensively used in day-care surgeries, although its effect on ICP during laparoscopy in humans has not been reported in the literature.
View Article and Find Full Text PDFThe viscosity variation of sputum is a common symptom of the progression of Chronic Obstructive Pulmonary Disease (COPD). Since the hydration of the sputum defines its viscosity level, dielectric sensors could be used for the characterization of sputum samples collected from patients for early diagnosis of COPD. In this work, a CMOS-based dielectric sensor for the real-time monitoring of sputum viscosity was designed and fabricated.
View Article and Find Full Text PDFBiosensors (Basel)
September 2017
In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials.
View Article and Find Full Text PDFThorac Cardiovasc Surg
January 2018
Background: Microcalcifications within the fibrous cap of the arteriosclerotic plaques lead to the accrual of plaque-destabilizing mechanical stress. New techniques for plaque screening with small detectors and the ability to differentiate between the smooth and hard elements of plaque formation are necessary.
Method: Vascular plaque formations are characterized as calcium phosphate containing structures organized as hydroxylapatite resembling the mineral whitlockite.
Filament-type HfO2-based RRAM has been considered as one of the most promising candidates for future non-volatile memories. Further improvement of the stability, particularly at the "OFF" state, of such devices is mainly hindered by resistance variation induced by the uncontrolled oxygen vacancies distribution and filament growth in HfO2 films. We report highly stable endurance of TiN/Ti/HfO2/Si-tip RRAM devices using a CMOS compatible nanotip method.
View Article and Find Full Text PDFIn this paper we present a planar lightwave switching mechanism based on large refractive index variations induced by electrically-driven strain control in a CMOS-compatible photonic platform. Feasibility of the proposed concept, having general validity, is numerically analyzed in a specific case-study given by a Mach-Zehnder Interferometer with Ge waveguides topped by a piezoelectric stressor. The stressor can be operated in order to dynamically tune the strain into the two interferometric arms.
View Article and Find Full Text PDF