Publications by authors named "Subhadra Dalwani"

The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an αβ tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site.

View Article and Find Full Text PDF

The crotonase fold is generated by a framework of four repeats of a ββα-unit, extended by two helical regions. The active site of crotonase superfamily (CS) enzymes is located at the N-terminal end of the helix of the third repeat, typically being covered by a C-terminal helix. A major subset of CS-enzymes catalyzes acyl-CoA-dependent reactions, allowing for a diverse range of acyl-tail modifications.

View Article and Find Full Text PDF

The Fe-dependent E. coli enzyme FucO catalyzes the reversible interconversion of short-chain (S)-lactaldehyde and (S)-1,2-propanediol, using NADH and NAD as cofactors, respectively. Laboratory-directed evolution experiments have been carried out previously using phenylacetaldehyde as the substrate for screening catalytic activity with bulky substrates, which are very poorly reduced by wild-type FucO.

View Article and Find Full Text PDF

Thiolases are CoA-dependent enzymes that catalyze the thiolytic cleavage of 3-ketoacyl-CoA, as well as its reverse reaction, which is the thioester-dependent Claisen condensation reaction. Thiolases are dimers or tetramers (dimers of dimers). All thiolases have two reactive cysteines: () a nucleophilic cysteine, which forms a covalent intermediate, and () an acid/base cysteine.

View Article and Find Full Text PDF

The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an αβ tetrameric enzyme. The α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) activity. Enzyme kinetic data reported here show that medium and long chain enoyl-CoA molecules are preferred substrates for MtTFE.

View Article and Find Full Text PDF

The web-based IceBear software is a versatile tool to monitor the results of crystallization experiments and is designed to facilitate supervisor and student communications. It also records and tracks all relevant information from crystallization setup to PDB deposition in protein crystallography projects. Fully automated data collection is now possible at several synchrotrons, which means that the number of samples tested at the synchrotron is currently increasing rapidly.

View Article and Find Full Text PDF

Degradation of fatty acids by the β-oxidation pathway results in the formation of acetyl-CoA which enters the TCA cycle for the production of ATP. In E. coli, the last three steps of the β-oxidation are catalyzed by two heterotetrameric αβ enzymes namely the aerobic trifunctional enzyme (EcTFE) and the anaerobic TFE (anEcTFE).

View Article and Find Full Text PDF