Publications by authors named "Subha D Puthankattil"

In this study, we analyze metastability, a feature of brain dynamics in subjects experiencing mild cognitive impairment Alzheimer's disease (MCI-AD) under eyes open (EO) and eyes closed (EC) conditions. Alzheimer's disease (AD) is a critically prolonged brain disorder that interrupts neural synchronization and desynchronization. Thus, studying metastability under EO and EC conditions would help in understanding the cortical dynamics and its impact in early-stage AD.

View Article and Find Full Text PDF

In this work, an attempt has been made to characterize arousal and valence emotional states using Electroencephalogram (EEG) signals and Phase lag index (PLI) based functional connectivity features. For this, EEG signals are considered from a publicly available DEAP database. Signals are decomposed into four frequency bands, namely theta (θ, 4-7 Hz), alpha (a, 8-12 Hz), beta (ß, 13-30 Hz), and gamma (γ, 30-45 Hz).

View Article and Find Full Text PDF

Background: Autism Spectrum Disorder (ASD), characterized by impaired sensory processing, has a wide range of clinical heterogeneity, which handicaps effective therapeutic interventions. Therefore, it is imperative to develop potential mechanisms for delineating clinically meaningful subgroups, so as to provide individualised medical treatment. In this study, an attempt is being made to differentiate the hyper-responsive subgroup from ASD by analysing the complexity pattern of Visual Evoked Potentials (VEPs), recorded from a group of 30 ASD participants, in the presence of vertical achromatic sinewave gratings at varying contrast conditions of low (5%), medium (50%) and high (90%).

View Article and Find Full Text PDF

Background: Functional connectivity and complexity analysis has been discretely studied to understand intricate brain dynamics. The current study investigates the interplay between functional connectivity and complexity using the Kuramoto mean-field model.

Method: Functional connectivity matrices are estimated using the weighted phase lag index and complexity measures through popularly used complexity estimators such as Lempel-Ziv complexity (LZC), Higuchi's fractal dimension (HFD), and fluctuation-based dispersion entropy (FDispEn).

View Article and Find Full Text PDF

In this work, an attempt has been made to classify arousal and valence states of emotion using time-domain features extracted from the Wavelet Packet Transform. For this, Electroencephalogram (EEG) signals from the publicly available DEAP database are considered. EEG signals are first decomposed using wavelet packet decomposition into θ, α, β, and γ bands.

View Article and Find Full Text PDF

Background: Visual evoked potential (VEP) offers a promising research strategy in the effort to characterise brain disorders. Pertinent signal processing techniques enable the development of potential applications of VEP. A joint time-frequency (TF) representation provides more comprehensive information about the underlying complex structures of these signals than individual time or frequency analysis.

View Article and Find Full Text PDF

Emotions are essential for the intellectual ability of human beings defined by perception, concentration, and actions. Electroencephalogram (EEG) responses have been studied in different lobes of the brain for emotion recognition. An attempt has been made in this work to identify emotional states using time-domain features, and probabilistic random forest based decision fusion.

View Article and Find Full Text PDF

Objective: The purpose of this study is to characterize functional connectivity changes in mild cognitive impaired Alzheimer's disease (MCI-AD) under resting and cognitive task conditions.

Method: EEG signals were recorded under resting states (Eyes closed (EC) and Eyes open (EO)) and cognitive states (Mental Arithmetic Eyes closed (MAEC) and Mental Arithmetic Eyes open (MAEO)) conditions. Functional connectivity metrics were calculated using weighted phase lag index (WPLI).

View Article and Find Full Text PDF

Background: The visual evoked Electroencephalogram (EEG) signals are useful indicators to explore the hidden neural circuitry in human brain. But these signals are highly contaminated with a plethora of artifacts arising from power interference, eye, muscle and cardiac movements. Since the interference components include neural activity also, the existing techniques result in the distortion of the underlying cerebral signals.

View Article and Find Full Text PDF

Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming.

View Article and Find Full Text PDF

Autism Spectrum Disorders (ASD) comprise all pervasive neurodevelopmental diseases marked by deficits in social and communication skills, delayed cognitive development, restricted and repetitive behaviors. The core symptoms begin in early childhood, may continue life-long resulting in poor performance in adult stage. Event-related potential (ERP) is basically a time-locked electroencephalogram signal elicited by various stimuli, related to sensory and cognitive processes.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a cognitive disability is analysed using a long range dependence parameter, hurst exponent (HE), calculated based on the time domain analysis of the measured electrical activity of brain. The electroencephalogram (EEG) signals of controls and mild cognitive impairment (MCI)-AD patients are evaluated under normal resting and mental arithmetic conditions. Simultaneous low pass filtering and total variation denoising algorithm is employed for preprocessing.

View Article and Find Full Text PDF

The EEG (Electroencephalogram) signal indicates the electrical activity of the brain. They are highly random in nature and may contain useful information about the brain state. However, it is very difficult to get useful information from these signals directly in the time domain just by observing them.

View Article and Find Full Text PDF