Retinal degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), initially manifest as dysfunction or death of the retinal pigment epithelium (RPE). Subretinal transplantation of human pluripotent stem cell (hPSC)-derived RPE cells has emerged as a potential therapy for retinal degeneration. However, RPE cells differentiated from hPSCs using current protocols are xeno-containing and are rarely applied in clinical trials.
View Article and Find Full Text PDFMeniscus-derived stem cells (MeSCs), a unique type of MSC, have outstanding advantages in meniscal cytotherapy and tissue engineering, but the effects and molecular mechanisms of PBM on MeSCs are still unclear. We used 660-nm LED light with different energy densities to irradiate six human MeSC samples and tested their proliferation rate via cell counting, chondrogenic differentiation capacity via the DMMB assay, mitochondrial activity via the MTT assay, and gene expression via qPCR. The proliferation ability, chondrogenic capacity and mitochondrial activity of the 18 J/cm group were greater than those of the 4 J/cm and control groups.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
Hepatic cancer is among the most recurrently detected malignancies worldwide and one of the main contributors to cancer-associated mortality. With few available therapeutic choices, there is an instant necessity to explore suitable options. In this aspect, Nanotechnology has been employed to explore prospective chemotherapeutic approaches, especially for cancer treatment.
View Article and Find Full Text PDFBackground: Stroke is the second and third leading cause of death and disability, respectively. To date, no definitive treatment can repair lost brain function. Recently, various preclinical studies have been reported on mesenchymal stromal cells (MSCs) and their derivatives and their potential as alternative therapies for stroke.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2023
Human cells, especially stem cells, need to communicate and interact with extracellular matrix (ECM) proteins, which not only serve as structural components but also guide and support cell fate and properties such as cell adhesion, proliferation, survival and differentiation. The binding of the cells with ECM proteins or ECM-derived peptides cell adhesion receptors such as integrins activates several signaling pathways that determine the cell fate, morphological change, proliferation and differentiation. The development of synthetic ECM protein-derived peptides that mimic the biological and biochemical functions of natural ECM proteins will benefit academic and clinical application.
View Article and Find Full Text PDFIntroduction: Cutaneous squamous cell carcinoma (SCC) is the second most common form of skin malignancy, representing around 20% of all skin cancers. It is the main cause of death due to non-melanoma skin cancer every year. Metastatic cutaneous SCC is associated with poor prognosis in patients and warrants a more effective and specific approach such as disruption of genes associated with cancer metastasis.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) have the ability to differentiate into cells derived from three germ layers and are an attractive cell source for cell therapy in regenerative medicine. However, hPSCs cannot be cultured on conventional tissue culture flasks but can be cultured on biomaterials with specific hPSC integrin interaction sites. We designed hydrogels conjugated with several designed peptides that had laminin-β4 active sites, optimal elasticities and different zeta potentials.
View Article and Find Full Text PDFBioinorg Chem Appl
September 2022
Leukemia is the most prevalent cancer in children and one of the most common and deadly cancers that affect adults. Several metal oxide nanoparticles, biopolymers, and phytochemicals have been discovered to target cancer cells selectively while inflicting low to no damage to healthy cells. Among the existing nanoparticle synthesis methodologies, biologically synthesized nanoparticles using phytochemicals have emerged as a straightforward, economical, and environmentally sound strategy.
View Article and Find Full Text PDFCurrently, new advancements in the area of nanotechnology opened up new prospects in the field of medicine that could provide us with a solution for numerous medical complications. Although a several varieties of nanoparticles is being explored to be used as nanomedicines, cerium oxide nanoparticles (CeO NPs) are the most attractive due to their biocompatibility and their switchable oxidation state (+3 and +4) or in other words the ability to act as prooxidant and antioxidant depending on the pH condition. Green synthesis of nanoparticles is preferred to make it more economical, eco-friendly, and less toxic.
View Article and Find Full Text PDFThe main aim of this study was to synthesize copper oxide- (CuO-) titanium oxide- (TiO-) chitosan-amygdalin nanocomposites (CTCANc) and to characterize them physically and biologically (antimicrobial and anticancer activity using MOLT4 blood cancer cell line) to endorse their useful applications as potential drug candidates in anticancer avenues. CuO-TiO-chitosan-amygdalin nanocomposites were synthesized according to standard, reported methods. Physical characterization of the nanocomposites was performed using methods like X-ray diffractometer (XRD), and morphological and ultrastructural analysis of nanocomposites were done using electron microscope scanning and transmission.
View Article and Find Full Text PDFBioinorg Chem Appl
September 2022
In this study, cells from human Chronic Myelogenous Leukemia (K562) were cultivated with CuO-TiO-Chitosan-Berbamine nanocomposites. We examined nanocomposites using XRD, DLS, FESEM, TEM, PL, EDAX, and FTIR spectroscopy, as well as MTT for cytotoxicity, and AO/EtBr for apoptotic morphology assessment. The rate of apoptosis and cell cycle arrests was determined using flow cytometry.
View Article and Find Full Text PDFS100A4 protein overexpression has been reported in different types of cancer and plays a key role by interacting with the tumor suppressor protein Tp53. Single nucleotide polymorphisms (SNP) in S100A4 could directly influence the biomolecular interaction with the tumor suppressor protein Tp53 due to their aberrant conformations. Hence, the study was designed to predict the deleterious SNP and its effect on the S100A4 protein structure and function.
View Article and Find Full Text PDFCancer immunotherapies are preferred over conventional treatments which are highly cytotoxic to normal cells. Focus has been on T cells but natural killer (NK) cells have equal potential. Concepts in cancer control and influence of sex require further investigation to improve successful mobilization of immune cells in cancer patients.
View Article and Find Full Text PDFPurpose: This study aimed to investigate the efficacy of human-derived umbilical cord mesenchymal stem cells (HDUMSC) and human-derived umbilical cord mesenchymal stem cells expressing erythropoietin (HDUMSC-EPO) to rescue total degenerated retina in a rat model.
Methods: The study included four treatment groups, namely negative control using normal saline (HBSS) injection, positive control using sodium iodide 60 mg/kg (SI), SI treated with HDUMSC, and SI treated with HDUMSC-EPO given via subretinal and intravenous routes, to test the efficacy of retinal regeneration following SI-induced retinal degeneration. Retinal function in both phases was tested via electroretinography (ERG) and histological staining examining the outer nuclear layer (ONL).
Nanomaterials (Basel)
November 2021
Cancer progresses through a distinctive reprogramming of metabolic pathways directed by genetic and epigenetic modifications. The hardwired changes induced by genetic mutations are resilient, while epigenetic modifications are softwired and more vulnerable to therapeutic intervention. Colon cancer is no different.
View Article and Find Full Text PDFInt J Mol Sci
November 2021
Cancer cells are able to proliferate in an unregulated manner. There are several mechanisms involved that propel such neoplastic transformations. One of these processes involves bypassing cell death through changes in gene expression and, consequently, cell growth.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2021
[This corrects the article DOI: 10.3389/fcell.2021.
View Article and Find Full Text PDFBone fractures have a high degree of severity. This is usually a result of the physical trauma of diseases that affect bone tissues, such as osteoporosis. Due to its highly vascular nature, the bone is in a constant state of remodeling.
View Article and Find Full Text PDF: Matrix metalloproteinases (MMP) have been implicated as major determinants of tumour growth and metastasis, which are considered two of the main hallmarks of cancer. The interaction of and other signalling molecules within and adjacent tumoral tissues, including immune cells, are rather elusive, particularly of adenocarcinoma cell type. In this study, we aimed to investigate the role of in non-small cell lung cancer proliferation and invasiveness potential.
View Article and Find Full Text PDF