Publications by authors named "Subbey S"

Capelin (Mallotus villosus) is a short-lived (1-4 years) fish species, that plays a crucial role by dominating the intermediate trophic level in the Barents Sea. Several episodes of extreme biomass decline (collapse) have been observed during the last three decades. We postulate that these collapses might be regulated by food availability (bottom-up effect) and/or by time discrepancy between capelin feeding and abundance of its prey (match-mismatch hypothesis).

View Article and Find Full Text PDF

This paper provides a statistical methodology for quantifying causality in complex dynamical systems, based on analysis of multidimensional time series data of the state variables. The methodology integrates Granger's causality analysis based on the log-likelihood function expansion (Partial pair-wise causality), and Akaike's power contribution approach over the whole frequency domain (Total causality). The proposed methodology addresses a major drawback of existing methodologies namely, their inability to use time series observation of state variables to quantify causality in complex systems.

View Article and Find Full Text PDF

This paper explores the stochastic dynamics of a simple foodweb system using a network model that mimics interacting species in a biosystem. It is shown that the system can be described by a set of ordinary differential equations with real-valued uncertain parameters, which satisfy a set of linear inequality constraints. The constraints restrict the solution space to a bounded convex polytope.

View Article and Find Full Text PDF

A novel approach to model food-web dynamics, based on a combination of chance (randomness) and necessity (system constraints), was presented by Mullon et al. in 2009. Based on simulations for the Benguela ecosystem, they concluded that observed patterns of ecosystem variability may simply result from basic structural constraints within which the ecosystem functions.

View Article and Find Full Text PDF

The application of data storage tags bears the potential for a quantum leap in the research on fish migrations, because not only first-capture and recapture positions are known, but at least theoretically, the migration path during the period at large can be reconstructed. Position, however, cannot be measured directly but has to be estimated using the available data on light, temperature, pressure and salinity. The reconstructed locations based on advanced estimation techniques have been termed geolocations.

View Article and Find Full Text PDF