Publications by authors named "Subbanna S"

Article Synopsis
  • - Cannabis sativa contains over 120 phytocannabinoids, with Δ-THC and CBD being the most recognized, but many lesser-known compounds are showing potential in affecting health through interactions with the endocannabinoid system.
  • - These compounds can cross the blood-brain barrier and have antioxidant, anti-inflammatory, and neuro-modulatory properties that might help in treating neurodegenerative diseases.
  • - While Δ-THC has been studied for its neuroprotective effects, there is increasing interest in non-psychotropic minor phytocannabinoids, which could offer therapeutic benefits for brain disorders and deserve more research.
View Article and Find Full Text PDF

Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus.

View Article and Find Full Text PDF

Ethanol exposure in neonatal mice induces acute neurodegeneration followed by long-lasting glial activation and GABAergic cell deficits along with behavioral abnormalities, providing a third trimester model of fetal alcohol spectrum disorders (FASD). Retinoic acid (RA), the active form of vitamin A, regulates transcription of RA-responsive genes and plays essential roles in the development of embryos and their CNS. Ethanol has been shown to disturb RA metabolism and signaling in the developing brain, which may be a cause of ethanol toxicity leading to FASD.

View Article and Find Full Text PDF

BT75, a boron-containing retinoid, is a novel retinoic acid receptor (RAR)α agonist synthesized by our group. Previous studies indicated that activation of retinoic acid (RA) signaling may attenuate progression of Alzheimer's disease (AD). Presently, we aimed to examine the anti-inflammatory effect of BT75 and explore the possible mechanism using cultured cells and an AD mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • Synaptic plasticity refers to the brain's ability to strengthen or weaken synaptic connections, playing a crucial role in brain remodeling after various types of damage, including alcohol use disorders (AUDs).
  • While significant research has focused on synaptic plasticity, its influence on neurobehavioral issues in AUDs, particularly in relation to fetal alcohol spectrum disorder (FASD), is still not fully understood.
  • Recent studies suggest that prenatal alcohol exposure leads to synaptic and molecular changes that could serve as targets for new treatments to improve cognitive and behavioral outcomes in individuals affected by FASD.
View Article and Find Full Text PDF

The actions of cannabis are mediated by G protein-coupled receptors that are part of an endogenous cannabinoid system (ECS). ECS consists of the naturally occurring ligands N-arachidonylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the CB and CB cannabinoid receptors. Epigenetics are heritable changes that affect gene expression without changing the DNA sequence, transducing external stimuli in stable alterations of the DNA or chromatin structure.

View Article and Find Full Text PDF

The endosome-associated GTPase Rab5 is a central player in the molecular mechanisms leading to degeneration of basal forebrain cholinergic neurons (BFCN), a long-standing target for drug development. As p38α is a Rab5 activator, we hypothesized that inhibition of this kinase holds potential as an approach to treat diseases associated with BFCN loss. Herein, we report that neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration.

View Article and Find Full Text PDF

An embryo's in-utero exposure to ethanol due to a mother's alcohol drinking results in a range of deficits in the child that are collectively termed fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is one of the leading causes of preventable intellectual disability. Its neurobehavioral underpinnings warrant systematic research.

View Article and Find Full Text PDF

Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation-mediated gene expression.

View Article and Find Full Text PDF

Neuronal endosomal dysfunction, the earliest known pathobiology specific to Alzheimer's disease (AD), is mediated by the aberrant activation of Rab5 triggered by APP-β secretase cleaved C-terminal fragment (APP-βCTF). To distinguish pathophysiological consequences specific to overactivated Rab5 itself, we activate Rab5 independently from APP-βCTF in the PA-Rab5 mouse model. We report that Rab5 overactivation alone recapitulates diverse prodromal and degenerative features of AD.

View Article and Find Full Text PDF

Alcohol consumption by pregnant women may produce neurological abnormalities that affect cognitive processes in children and are together defined as fetal alcohol spectrum disorders (FASDs). However, the molecular underpinnings are still poorly defined. In our earlier studies, we found that ethanol exposure of postnatal day 7 (P7) mice significantly induced widespread neurodegeneration mediated via endocannabinoids (eCBs)/cannabinoid receptor type 1 (CB1R).

View Article and Find Full Text PDF

Background: Alcohol consumption during pregnancy is widespread and contributes to pediatric neurological defects, including hippocampal and neocortex dysfunction, causing cognitive deficits termed fetal alcohol spectrum disorders. However, the critical mechanisms underlying these brain abnormalities remain poorly described.

Methods: Using a postnatal ethanol exposure (PEE) animal model and pharmacological, epigenetic, synaptic plasticity-related and behavioral approaches, we discovered a novel persistent epigenetic mechanism of neurodegeneration in neonatal hippocampus and neocortex brain regions and of cognitive decline in adult animals.

View Article and Find Full Text PDF

Δ -tetrahydrocannabinol, the principal active component in Cannabis sativa extracts such as marijuana, participates in cell signalling by binding to cannabinoid CB and CB receptors on the cell surface. The CB receptors are present in both inhibitory and excitatory presynaptic terminals and the CB receptors are found in neuronal subpopulations in addition to microglial cells and astrocytes and are present in both presynaptic and postsynaptic terminals. Subsequent to the discovery of the endocannabinoid (eCB) system, studies have suggested that alcohol alters the eCB system and that this system plays a major role in the motivation to abuse alcohol.

View Article and Find Full Text PDF

The chief psychoactive constituent of many bioactive phytocannabinoids (Δ⁸-tetrahydrocannabinol, Δ⁸-THC) found in hemp, cannabis or marijuana plants are scientifically denoted by the Latin term, , acts on cell surface receptors. These receptors are ubiquitously expressed. To date, two cannabinoid receptors have been cloned and characterized.

View Article and Find Full Text PDF

Fetal alcohol spectrum disorders (FASD) represent a wide array of defects that arise from ethanol exposure during development. However, the underlying molecular mechanisms are limited. In the current report, we aimed to further evaluate the cannabinoid receptor type 1 (CB1R)-mediated mechanisms in a postnatal ethanol-exposed animal model.

View Article and Find Full Text PDF

Neurofilament (NFL) proteins have recently been found to play unique roles in synapses. NFL is known to interact with the GluN1 subunit of N-methyl-D-aspartic acid (NMDAR) and be reduced in schizophrenia though functional consequences are unknown. Here we investigated whether the interaction of NFL with GluN1 modulates synaptic transmission and schizophrenia-associated behaviors.

View Article and Find Full Text PDF

Postnatal ethanol exposure has been shown to cause persistent defects in hippocampal synaptic plasticity and disrupt learning and memory processes. However, the mechanisms responsible for these abnormalities are less well studied. We evaluated the influence of postnatal ethanol exposure on several signaling and epigenetic changes and on expression of the activity-regulated cytoskeletal (Arc) protein in the hippocampus of adult offspring under baseline conditions and after a Y-maze spatial memory (SP) behavior (activity).

View Article and Find Full Text PDF

Alcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD). However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7) mice to ethanol activates caspase-3 via cannabinoid receptor type-1 (CB1R) in neonatal mice and causes a reduction in methylated DNA binding protein (MeCP2) levels.

View Article and Find Full Text PDF

Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs.

View Article and Find Full Text PDF

The present study was undertaken to evaluate the immediate and long-term effects of a single-day exposure to 5-Azacytidine (5-AzaC), a DNA methyltransferase inhibitor, on neurobehavioral abnormalities in mice. Our findings suggest that the 5-AzaC treatment significantly inhibited DNA methylation, impaired extracellular signal-regulated kinase (ERK1/2) activation and reduced expression of the activity-regulated cytoskeleton-associated protein (Arc). These events lead to the activation of caspase-3 (a marker for neurodegeneration) in several brain regions, including the hippocampus and cortex, two brain areas that are essential for memory formation and memory storage, respectively.

View Article and Find Full Text PDF

Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS), which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD). Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes.

View Article and Find Full Text PDF

Older adults often find it difficult to perceive speech, especially in noisy conditions. Though hearing aid is one of the rehabilitative devices available to older adults to alleviate hearing loss, some of them may experience annoyance through hearing aid and hence reject it, may be due to circuitry noise and/or background noise. Acceptable noise level is a direct behavioural measure to estimate the extent of how much a person is able to put up with noise while simultaneously listening to speech.

View Article and Find Full Text PDF

The consumption of ethanol by pregnant women may cause neurological abnormalities, affecting learning and memory processes in children, and are collectively described as fetal alcohol spectrum disorders. However, the molecular mechanisms underlying these changes are still poorly understood. In our previous studies, we found that ethanol treatment of postnatal day 7 (P7) mice significantly enhances the anandamide levels but not the 2-arachidonylglycerol (2-AG) levels and induces widespread neurodegeneration, but the reason for the lack of significant effects of ethanol on the 2-AG level is unknown.

View Article and Find Full Text PDF

Background: Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood.

Methods: In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder.

View Article and Find Full Text PDF

The significant consequences of ethanol use during pregnancy are neurobehavioral abnormalities involving hippocampal and neocortex malfunctions that cause learning and memory deficits collectively named fetal alcohol spectrum disorder. However, the molecular mechanisms underlying these abnormalities are still poorly understood and therefore warrant systematic research. Here, we document novel epigenetic abnormalities in the mouse model of fetal alcohol spectrum disorder.

View Article and Find Full Text PDF