Publications by authors named "Subba Rao Polimera"

Silyl enol ethers were examined as a masked source of saturated ketones to derive β-aryl enones and their derivatives by dehydrosilylation to generate enones and subsequent oxidative arylation with arylboronic acids as transmetallation coupling partners using relayed Pd(II) catalysis in one pot under base-free conditions. Oxygen was found to be an efficient and green oxidant to enable both dehydrosilylation of enol silanes and arylation. Additionally, arylation conditions can be custom-designed to take advantage of aryl halides as an alternative source of arylating agents.

View Article and Find Full Text PDF

Synthetically important α-oxoketene aminal intermediates can now be accessed from readily available and inexpensive carbodiimides as starting materials via the nucleophilic addition of palladium enolates derived from enol silane precursors. This operationally simple method features mild reaction conditions, including open air atmosphere, ligand-free metal catalysis, broad substrate scope, and multi-gram scalability. Select synthetic applications that take advantage of the enamine character of α-oxoketene aminals and involve C-nucleophilic additions to electrophilic systems, including an α,β-unsaturated ester, an azo dicarboxylate, an aralkyl halide, and an aldehyde, are demonstrated.

View Article and Find Full Text PDF

In contrast to the conventional 1,4-addition process, regioselective 1,2-addition of silyl enol ethers to quinones can now be achieved a palladium(II) enolate pathway that provides access to 4-hydroxy-4-(2-oxo-2-arylethyl)cyclohexa-2,5-dien-1-one derivatives. This quinone alkylation protocol proceeds under mild reaction conditions at ambient temperature under open air and does not require either an external ligand for the palladium or the use of a base. Additionally, the cyclohexadienone products have been exploited as synthetic precursors for the construction of fused heteroaryl systems.

View Article and Find Full Text PDF

IRAK4 is an attractive therapeutic target for the treatment of inflammatory conditions. Structure guided optimization of a nicotinamide series of inhibitors has been expanded to explore the IRAK4 front pocket. This has resulted in the identification of compounds such as with improved potency and selectivity.

View Article and Find Full Text PDF