Adipose tissue synthesizes many proteins and hormones collectively called adipokines, which are linked to a number of diseases, including cancer. Low levels of adiponectin are reported to be a risk factor for obesity-related cancers including colorectal and prostate cancers. Accordingly, obesity/lifestyle-related diseases, including certain cancers, may be treated by developing drugs that act specifically on adiponectin levels in circulation.
View Article and Find Full Text PDFThe transcription factor NF-κB plays a central role in angiogenesis in colorectal cancer (CRC). Curcumin is a natural dietary product that inhibits NF-κB. The objective of this study is to evaluate the antiangiogenic effects of curcumin and two potent synthetic analogues (EF31 and UBS109) in CRC.
View Article and Find Full Text PDFAdipose tissue is a highly vascularized endocrine organ, and its secretion profiles may vary with obesity. Adiponectin is secreted by adipocytes that make up adipose tissue. Worldwide, obesity has been designated a serious health problem among women and is associated with a variety of metabolic disorders and an increased risk of developing cancer of the cervix, ovaries, uterus (uterine/endometrial), and breast.
View Article and Find Full Text PDFCell cycle progression and DNA synthesis are essential steps in cancer cell growth and resistance. Thymidylate synthase (TS) is a therapeutic target for 5FU. Curcumin is a potent inhibitor of NF-κB.
View Article and Find Full Text PDFAquaporins (AQPs) are small (~30 kDa monomers) integral membrane water transport proteins that allow water to flow through cell membranes in reaction to osmotic gradients in cells. In mammals, the family of AQPs has thirteen (AQP0-12) unique members that mediate critical biological functions. Since AQPs can impact cell proliferation, migration and angiogenesis, their role in various human cancers is well established.
View Article and Find Full Text PDFIn the present study, pluronic lecithin organogel (PLO) of diltiazem hydrochloride (DZH) was developed by taking different ratios of organic phase to aqueous phase (1:3, 1:4, and 1:5) with varying concentration of soya lecithin (20, 30, and 40 % w/w) in organic phase (isopropyl myristate, IPM) and pluronic (20, 25, and 30 % w/w) in aqueous phase, respectively, and characterized for in vitro parameters and ex vivo permeation study. The results of in vitro parameters were found to be within permissible limit and all the PLOs were physically stable at refrigeration and ambient temperature. The influence of phase ratio and different concentrations of soya lecithin on DZH release from the PLOs was found to be significant (p < 0.
View Article and Find Full Text PDF