Publications by authors named "Subarna Guha"

An efficient Al(3+) receptor, 6-(2-hydroxybenzylideneamino)-2H-chromen-2-one (HBC), has been synthesized by condensing salicylaldehyde with 6-aminocoumarin. The molecular structure of HBC has been determined by a single crystal X-ray analysis. It was established that in the presence of Al(3+), HBC shows 25 fold enhancement of fluorescence intensity which might be attributed to the chelation-enhanced fluorescence (CHEF) process.

View Article and Find Full Text PDF

An efficient fluorescent probe (E)-N1-((E)-2-((pyren-7-yl)methyleneamino)ethyl)-N2-((pyren-7-yl)methylene)ethane-1,2-diamine (L) has been synthesized by a facile one-step condensation reaction. L can selectively detect Cd(2+) in presence of other common metal ions in 0.1 M HEPES buffered DMSO-water (4 : 1, v/v) medium.

View Article and Find Full Text PDF

Ni(2+)-induced intramolecular excimer formation of a naphthalene-based novel fluorescent probe, 1-[(naphthalen-3-yl)methylthio]-2-[(naphthalen-6-yl)methylthio]ethane (L), has been investigated for the first time and nicely demonstrated by excitation spectra, a fluorescence lifetime experiment, and (1)H NMR titration. The addition of Ni(2+) to a solution of L (DMSO:water = 1:1, v/v; λ(em) = 345 nm, λ(ex) = 280 nm) quenched its monomer emission, with subsequent enhancement of the excimer intensity (at 430 nm) with an isoemissive point at 381 nm. The fluorescence lifetime of free L (0.

View Article and Find Full Text PDF

2-((Naphthalen-6-yl)methylthio)ethanol (HL) was prepared by one pot synthesis using 2-mercaptoethanol and 2-bromomethylnaphthalene. It was found to be a highly selective fluorescent sensor for Al(3+) in the physiological pH (pH 7.0-8.

View Article and Find Full Text PDF

A thiophene-coumarin hybrid molecule, (6E)-6-((thiophen-2-yl)methyleneamino)-2H-chromen-2-one (TMC) has been prepared and its single crystal X-ray structure is reported. TMC can selectively detect Cr(3+) in presence of other common cations. Both TMC and its Cr(3+) complex are well characterized by different spectroscopic techniques like (1)H NMR, QTOF-MS ES(+), FTIR and elemental analysis as well.

View Article and Find Full Text PDF

An indole based naphthalene derivative is reported as a highly selective fluorescent probe for azide ion in aqueous ethanol. The probe is applied for cell imaging of the N(3)(-) ion in contaminated living cells. Both experimental and theoretical studies have been performed to figure out the plausible mechanism of fluorescence enhancement of the probe upon binding with N(3)(-).

View Article and Find Full Text PDF

A weakly fluorescent cobalt(II) complex is synthesized using 2-(2-pyridyl)-benzimidazole (PBI) as a chelating fluorescent ligand and characterized by single crystal X-ray structure. This complex serves as an efficient fluorescent probe for trace level determination of aspartic acid (AspA) and glutamic acid (GluA) in aqueous solution. Rest of the naturally occurring amino acids did not interfere.

View Article and Find Full Text PDF

An efficient Hg(2+) selective fluorescent probe (vanillin azo coumarin, VAC) was synthesized by blending vanillin with coumarin. VAC and its Hg(2+) complex were well characterized by different spectroscopic techniques like (1)H NMR, QTOF-MS ES(+), FTIR and elemental analysis as well. VAC could detect up to 1.

View Article and Find Full Text PDF

9-Acridone-4-carboxylic acid has been established as an efficient Cr(III) fluorescent sensor. The binding of this ligand with Cr(III) is confirmed by FTIR, thermal and mass spectral analysis of the product. Based on this chelation assisted fluorescence quenching, a highly sensitive spectrofluorometric method is developed for trace level detection, estimation and speciation studies of chromium in DMF-water.

View Article and Find Full Text PDF

A new fluorescent, Hg(2+) selective chemosensor, 4-methylsulfanyl-2-[(pyren-4-ylmethylene)-amino] butyric acid methyl ester (L, MP) was synthesized by blending methionine with pyrene. It was well characterized by different analytical techniques, viz. (1)H NMR, (13)C NMR, QTOF mass spectra, elemental analysis, FTIR and UV-vis spectroscopy.

View Article and Find Full Text PDF