Publications by authors named "Subaharan Kesavan"

The incorporation of artificial intelligence into agriculture presents challenges, particularly due to hardware limitations, especially in sensors. Currently, pest detection relies heavily on manual scouting by humans. Therefore, the objective of this study is to create a chemoresistive sensor that enables early identification of the characteristic volatile compound, .

View Article and Find Full Text PDF

Bemisia tabaci is a global invasive pest causing substantial loss on several economically important crops and has developed a very high level of resistance to insecticides making current management practices ineffective. Thus, the novel pest management strategy like RNA interference (RNAi) has emerged as a potential molecular tool in the management of insect pests particularly B. tabaci.

View Article and Find Full Text PDF

In agriculture, pest management is a major challenge. Crop releases volatiles in response to the pest; hence, sensing these volatile signals at a very early stage will ease pest management. Here, binary catalyst-loaded SnO nanoparticles of <5 nm were synthesized for the repeated capture and oxidation of the signature volatile and its products to amplify the chemoresistive signal to detect concentrations as low as ≈120 ppb.

View Article and Find Full Text PDF

Aedes aegypti is the main vector of yellow fever, chikungunya, Zika, and dengue worldwide and is managed by using chemical insecticides. Though effective, their indiscriminate use brings in associated problems on safety to non-target and the environment. This supports the use of plant-based essential oil (EO) formulations as they are safe to use with limited effect on non-target organisms.

View Article and Find Full Text PDF

The indiscriminate use of pesticides leads to irreparable damage to the ecosystem, which motivates for sustainable alternatives like pheromone-assisted pest management. The tomato pinworm is a major threat to tomato cultivation. Moreover, its green management technology uses a pheromone trap that has a short field life.

View Article and Find Full Text PDF

Housefly, Musca domestica L. is a pest of public health importance and is responsible for spreading diseases like typhoid, diarrhoea, plague etc. Indiscriminate reliance on synthetic insecticides has led to development of insecticide resistance and ill effect to humans and nontarget animals.

View Article and Find Full Text PDF

Background: The cellular response to nanoparticles (NPs) for the mechanical clue and biochemical changes are unexplored. Here, we provide the comprehensive analysis of the Chinese Hamster Ovary (CHO-K1) cell line to study cell behaviour following the exposure of mesoporous silica nanoparticle (MSN), multiwall carbon nanotubes (MWCNTs), and zinc oxide (ZnO) NPs.

Results: Through the high-throughput proteomic study, we observed that the effect of NPs is alone not restricted to cell viability but also on cell polarisation.

View Article and Find Full Text PDF

The increasing use of nanomaterials has naturally caused heightened concerns about their potential risks to human and animal health. We investigated the effect of zinc oxide nanoparticles (ZnO NPs) and mesoporous silica nanoparticles (MSN) on steroidogenesis in the corpus luteum (CL) of pregnant mice and testis of male offspring. Pregnant albino mice were exposed to ZnO NPs and MSN for 2 days on alternate days, gestation days 15-19.

View Article and Find Full Text PDF

In the present work, we took two nanomaterials (NMs), mesoporous silica nanoparticles (MSNs) and multiwalled carbon nanotubes (MWCNTs), and compared their in vivo toxicity taking albino mice as a test animal model. Presently, conflicting data persist regarding behavior of these NMs with macromolecules like protein and lipid at the cellular level in cell lines as well as in animal models and this generated the interest to study them. The mice were treated orally with a single dose of 50 ppm MWCNTs and intraperitoneally with 10, 25, and 50 mg kg body weight (BW) of MSNs and 1.

View Article and Find Full Text PDF

Black pepper associated bacterium BP25 was isolated from root endosphere of apparently healthy cultivar Panniyur-5 that protected black pepper against Phytophthora capsici and Radopholus similis - the major production constraints. The bacterium was characterized and mechanisms of its antagonistic action against major pathogens are elucidated. The polyphasic phenotypic analysis revealed its identity as Pseudomonas putida.

View Article and Find Full Text PDF

The reproductive success of herbivorous insects largely depends on the mother's oviposition preference. In nocturnal insects, olfaction is arguably the most important sensory modality mediating mate finding, foraging, and host location. In most habitats, gravid females select among a number of plants of varying suitability, yet assessment of the neuroethological mechanisms underlying odor-guided choice between host plants is rare.

View Article and Find Full Text PDF