During the utilization of lignocellulosic biomass such as corn stover, many by-products are produced in the pretreatment process that can severely inhibit the activity of microbes in the fermentation step. To achieve efficient biomass conversion, detoxification is usually required before microbial fermentation. In this study, the prehydrolysate from dilute acid pretreatment of corn stover was used as a lactic acid fermentation substrate.
View Article and Find Full Text PDFThe prehydrolysate from dilute acid pretreatment of lignocellulosic feedstocks often contains inhibitory compounds that can seriously inhibit the subsequent enzymatic and fermentation processes. Acetic acid is one of the most representative toxic compounds. In this research, alkaline deacetylation of corn stover was carried out using sodium carbonate under mild conditions to selectively remove the acetyl groups of the biomass and reduce the toxicity of the prehydrolysate.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
March 2023
Background: The dense structure of cellulose lowers its reactivity and hinders its applications. Concentrated sulfuric acid is an ideal solvent to dissolve cellulose and thus has been used widely to treat cellulose. However, the changes of cellulose after reaction with concentrated sulfuric acid at near-limit S/L ratio and its effect on enzymatic saccharification still need further investigation.
View Article and Find Full Text PDFThere is a strong need for low-cost lignocellulosic composition simultaneous localization methodologies to benefit deeper understandings of crop stalk morphology. This study developed a robust quantitative safranin O-fast green staining-based optical microscopy imaging methodology for in-situ simultaneously generating digital profiles of lignin and cellulose in stalk tissues. Foreground extraction and dye residue removal of stained images were adapted.
View Article and Find Full Text PDFA new method for rapidly detecting of total chlorogenic acids (CGAs) in plants by surface-enhanced Raman spectroscopy (SERS) based on reusable CuO-Ag substrate was developed in this study. The CuO-Ag substrate prepared by the in-situ growth method had high uniformity with peak intensity relative standard deviation (RSD) of 5.27%, repeatability with peak intensity RSD of 3.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
March 2022
Background: To further optimize the mechanochemical pretreatment process, a combined wet alkaline mechanical pretreatment of corn stover was proposed with a short time and less chemical consumption at room temperature.
Results: The combined alkaline mechanical pretreatment significantly enhanced enzymatic hydrolysis resulting a highest glucose yield (Y) of 91.9% with 3% NaOH and ball milling (BM) for 10 min.
It is crucial to develop a new characterization method to provide insight into the complex adsorption mechanism of crop residue-derived char. This study established a novel 3D in-situ visualization method for qualitative and semi-quantitative characterizing Pb (II) adsorption profiles in crop residue-derived char particles. First, coconut shell activated carbon, rice husk biochar, and wheat biochar after Pb (II) adsorption was used for X-ray micro-CT imaging.
View Article and Find Full Text PDFPaper mill sludge (PMS) raises critical environmental issues due to its disposal problem, but its high sugar content and well-dispersed structure make it a great feedstock for biochemical production. The technical feasibility of integrating cellulase enzyme production into lactic acid (LA) fermentation from PMS was investigated in this study. The low ash content of PMS suggests a great potential for cellulase production.
View Article and Find Full Text PDFBiotechnol Biofuels
April 2020
Background: Lignin plays an important role in biochemical conversion of biomass to biofuels. A significant amount of lignin is precipitated on the surface of pretreated substrates after organosolv pretreatment. The effect of this residual lignin on enzymatic hydrolysis has been well understood, however, their effect on subsequent ABE fermentation is still unknown.
View Article and Find Full Text PDFThe aim of this work was to study the feasibility of using fish manure waste as a nutrient source for lactic acid fermentation. Fish waste contains nitrogen and minerals that could support the growth of lactic acid bacteria (LAB), making it a good candidate as the nutrient source for lactic acid fermentation. Two different fish manure wastes, from Nile tilapia and channel catfish aquaculture, were investigated for their performance on different sugar substrates.
View Article and Find Full Text PDFBioconversion of lignocellulose to biofuels suffers from the degradation compounds formed during pretreatment and acid hydrolysis. In order to achieve an efficient biomass to biofuel conversion, detoxification is often required before enzymatic hydrolysis and microbial fermentation. Prehydrolysates from ethanol organosolv-pretreated pine wood were used as substrates in butanol fermentation in this study.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2018
The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested.
View Article and Find Full Text PDFPaper mill sludge (PS), a solid waste from pulp and paper industry, was investigated as a feedstock for acetone-butanol-ethanol (ABE) production by simultaneous saccharification and fermentation (SSF). ABE fermentation of paper sludge by Clostridium acetobutylicum required partial removal of ash in PS to enhance its enzymatic digestibility. Enzymatic hydrolysis was found to be a rate-limiting step in the SSF.
View Article and Find Full Text PDFPaper mill sludge is a solid waste material composed of pulp residues and ash generated from pulping and paper making process. The carbohydrate portion of the sludges from Kraft/Recycle paper mill has chemical and physical characteristics similar to those of commercial wood pulp. Because of its high carbohydrate content and well-dispersed structure, the sludge can be biologically converted to value-added products without pretreatment.
View Article and Find Full Text PDF