Publications by authors named "Su-ping Niu"

Objective: Wallerian degeneration is a pathological process closely related to peripheral nerve regeneration following injury, and includes the disintegration and phagocytosis of peripheral nervous system cells. Traditionally, morphological changes are observed by performing immunofluorescence staining after sectioning, which results in the loss of some histological information. The purpose of this study was to explore a new, nondestructive, and systematic method for observing axonal histological changes during Wallerian degeneration.

View Article and Find Full Text PDF

Peripheral nerves have a limited capacity for self-repair and those that are severely damaged or have significant defects are challenging to repair. Investigating the pathophysiology of peripheral nerve repair is important for the clinical treatment of peripheral nerve repair and regeneration. In this study, rat models of right sciatic nerve injury were established by a clamping method.

View Article and Find Full Text PDF

Complex pathological changes occur during the development of spinal cord injury (SCI), and determining the underlying molecular events that occur during SCI is necessary for the development of promising molecular targets and therapeutic strategies. This study was designed to explore differentially expressed genes (DEGs) associated with the acute and chronic stages of SCI using bioinformatics analysis. Gene expression profiles (GSE45006, GSE93249, and GSE45550) were downloaded from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Neutrophil peptide 1 belongs to a family of peptides involved in innate immunity. Continuous intramuscular injection of neutrophil peptide 1 can promote the regeneration of peripheral nerves, but clinical application in this manner is not convenient. To this end, the effects of a single intraoperative administration of neutrophil peptide 1 on peripheral nerve regeneration were experimentally observed.

View Article and Find Full Text PDF

Our previous studies have confirmed that during nerve transposition repair to injured peripheral nerves, the regenerated nerve fibers of motor neurons in the anterior horn of the spinal cord can effectively repair distal nerve and target muscle tissue and restore muscle motor function. To observe the effect of nerve regeneration and motor function recovery after several types of nerve transposition for median nerve defect (2 mm), 30 Sprague-Dawley rats were randomly divided into sham operation group, epineurial neurorrhaphy group, musculocutaneous nerve transposition group, medial pectoral nerve transposition group, and radial nerve muscular branch transposition group. Three months after nerve repair, the wrist flexion test was used to evaluate the recovery of wrist flexion after regeneration of median nerve in the affected limbs of rats.

View Article and Find Full Text PDF

Multiple regeneration of axonal buds has been shown to exist during the repair of peripheral nerve injury, which confirms a certain repair potential of the injured peripheral nerve. Therefore, a systematic nerve transposition repair technique has been proposed to treat severe peripheral nerve injury. During nerve transposition repair, the regenerated nerve fibers of motor neurons in the anterior horn of the spinal cord can effectively grow into the repaired distal nerve and target muscle tissues, which is conducive to the recovery of motor function.

View Article and Find Full Text PDF

Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the therapeutic effects of local administration of icariin, a major component of Epimedium extract, on peripheral nerve regeneration. A poly(lactic-co-glycolic acid) biological conduit sleeve was used to bridge a 5 mm right sciatic nerve defect in rats, and physiological saline, nerve growth factor, icariin suspension, or nerve growth factor-releasing microsphere suspension was injected into the defect.

View Article and Find Full Text PDF

Objective: To investigate the effects of 5-Aza-CdR (methylation transferase inhibitor)on the expression levels of leptin gene in chondrocytes and methylation states of leptin promoter region between osteoarthritis (OA) group and control.

Methods: The chondrocytes in osteoarthritis group were treated with 5-Aza-CdR with different doses and time-points, and the expression level of leptin was detected by real-time polymerase chain reaction for picking up the optimum dose and time-point. Next, the chondrocytes in 5 osteoarthritis patients and 5 control patients (amputation due to severe trauma) were treated with 5-Aza-CdR.

View Article and Find Full Text PDF