Publications by authors named "Su-Youne Chang"

Alcohol use disorder (AUD) is a chronic relapsing brain disorder characterized by an impaired ability to stop or control alcohol consumption despite adverse social, occupational, or health consequences. AUD affects nearly one-third of adults at some point during their lives, with an associated cost of approximately $249 billion annually in the U.S.

View Article and Find Full Text PDF
Article Synopsis
  • * Direct sampling of brain interstitial fluid using implanted microperfusion probes is a potential solution to these challenges.
  • * Research showed that recovery of dextrans via microperfusion was more effective at shorter distances from the infusion point, with experimental recovery rates providing guidelines for interpreting protein concentrations in brain fluid samples.
View Article and Find Full Text PDF

Parkinson's disease (PD) is marked by degeneration in the nigrostriatal dopaminergic pathway, affecting motor control via complex changes in the cortico-basal ganglia-thalamic motor network, including the primary motor cortex (M1). The modulation of M1 neuronal activity by dopaminergic inputs, particularly from the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), plays a crucial role in PD pathophysiology. This study investigates how nigrostriatal dopaminergic degeneration influences M1 neuronal activity in rats using in vivo calcium imaging.

View Article and Find Full Text PDF

Background: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established treatment for the motor symptoms of Parkinson's disease (PD). While PD is primarily characterized by motor symptoms such as tremor, rigidity, and bradykinesia, it also involves a range of non-motor symptoms, and anxiety is one of the most common. The relationship between PD and anxiety is complex and can be a result of both pathological neural changes and the psychological and emotional impacts of living with a chronic progressive condition.

View Article and Find Full Text PDF

Cerebral malaria is the deadliest complication that can arise from Plasmodium infection. CD8 T-cell engagement of brain vasculature is a putative mechanism of neuropathology in cerebral malaria. To define contributions of brain endothelial cell major histocompatibility complex (MHC) class I antigen-presentation to CD8 T cells in establishing cerebral malaria pathology, we developed novel H-2Kb LoxP and H-2Db LoxP mice crossed with Cdh5-Cre mice to achieve targeted deletion of discrete class I molecules, specifically from brain endothelium.

View Article and Find Full Text PDF

Functional ultrasound (fUS), an emerging hemodynamic-based functional neuroimaging technique, is especially suited to probe brain activity and primarily used in animal models. Increasing use of pharmacological models for essential tremor extends new research to the utilization of fUS imaging in such models. Harmaline-induced tremor is an easily provoked model for the development of new therapies for essential tremor (ET).

View Article and Find Full Text PDF

Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3).

View Article and Find Full Text PDF

. Vagus nerve stimulation (VNS), which involves a surgical procedure to place electrodes directly on the vagus nerve (VN), is approved clinically for the treatment of epilepsy, depression, and to facilitate rehabilitation in stroke. VNS at surgically implanted electrodes is often limited by activation of motor nerve fibers near and within the VN that cause neck muscle contraction.

View Article and Find Full Text PDF

. To modify off-the-shelf components to build a device for collecting electroencephalography (EEG) from macroelectrodes surrounded by large fluid access ports sampled by an integrated microperfusion system in order to establish a method for sampling brain interstitial fluid (ISF) at the site of stimulation or seizure activity with no bias for molecular size..

View Article and Find Full Text PDF

Essential tremor (ET) is the most frequent form of pathologic tremor and one of the most common adult-onset neurologic impairments. However, underlying mechanisms by which structural alterations within the tremor circuit generate the pathological state and how rhythmic neuronal activities propagate and drive tremor remains unclear. Harmaline (HA)-induced tremor model has been most frequently utilized animal model for ET studies, however, there is still a dearth of knowledge over the degree to whether HA-induced tremor mimics the actual underlying pathophysiology of ET, particularly the involvement of thalamo-cortical region.

View Article and Find Full Text PDF

In this study, we demonstrate that Raman microscopy combined with computational analysis is a useful approach to discriminating accurately between brain tumor bio-specimens and to identifying structural changes in glioblastoma (GBM) bio-signatures after nordihydroguaiaretic acid (NDGA) administration. NDGA phenolic lignan was selected as a potential therapeutic agent because of its reported beneficial effects in alleviating and inhibiting the formation of multi-organ malignant tumors. The current analysis of NDGA's impact on GBM human cells demonstrates a reduction in the quantity of altered protein content and of reactive oxygen species (ROS)-damaged phenylalanine; results that correlate with the ROS scavenger and anti-oxidant properties of NDGA.

View Article and Find Full Text PDF

Electrical stimulation of neural tissue, such as deep brain stimulation (DBS) and cortical stimulation, is widely applied therapeutic neuromodulation techniques for neurologic disorders. Penetrating electrodes (e.g.

View Article and Find Full Text PDF

In this study, we explored the feasibility of using functional ultrasound (fUS) imaging to visualize cerebral activation associated with thalamic deep brain stimulation (DBS), in rodents. The ventrolateral (VL) thalamus was stimulated using electrical pulses of low and high frequencies of 10 and 100 Hz, respectively, and multiple voltages (1-7 V) and pulse widths (50-1500 μs). The fUS imaging demonstrated DBS-evoked activation of cerebral cortex based on changes of cerebral blood volume, specifically at the primary motor cortex (PMC).

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD.

View Article and Find Full Text PDF

Background: Accumulation of hyperphosphorylated tau (pTau) protein is associated with synaptic dysfunction in Alzheimer's disease (AD). We previously demonstrated that neuroprotection in familial mouse models of AD could be achieved by targeting mitochondria complex I (MCI) and activating the adaptive stress response. Efficacy of this strategy on pTau-related pathology remained unknown.

View Article and Find Full Text PDF

Objective: Conventional selection of pre-ictal EEG epochs for seizure prediction algorithm training data typically assumes a continuous pre-ictal brain state preceding a seizure. This is carried out by defining a fixed duration, pre-ictal time period before seizures from which pre-ictal training data epochs are uniformly sampled. However, stochastic physiological and pathological fluctuations in EEG data characteristics and underlying brain states suggest that pre-ictal state dynamics may be more complex, and selection of pre-ictal training data segments to reflect this could improve algorithm performance.

View Article and Find Full Text PDF

The development of closed-loop deep brain stimulation (DBS) systems represents a significant opportunity for innovation in the clinical application of neurostimulation therapies. Despite the highly dynamic nature of neurological diseases, open-loop DBS applications are incapable of modifying parameters in real time to react to fluctuations in disease states. Thus, current practice for the designation of stimulation parameters, such as duration, amplitude, and pulse frequency, is an algorithmic process.

View Article and Find Full Text PDF

Background: Habitual reward-seeking behavior is a hallmark of addictive behavior. The role of the dorsomedial striatum (DMS) in regulating goal-directed reward-seeking behavior has been long appreciated. However, it remains unclear how the astrocytic activities in the DMS differentially affect the behavioral shift.

View Article and Find Full Text PDF

Prohormone convertase 2 (PC2) is essential for the biosynthesis of many neuropeptides, including several of them in hippocampus. In mouse brain, lacking an enzymatically active PC2 (PC2-null) causes accumulation of many neuropeptides in their precursor or intermediate forms. Little is known about how a PC2-null state may affect the function of the hippocampus.

View Article and Find Full Text PDF

Neurochemical recording techniques have expanded our understanding of the pathophysiology of neurological disorders, as well as the mechanisms of action of treatment modalities like deep brain stimulation (DBS). DBS is used to treat diseases such as Parkinson's disease, Tourette syndrome, and obsessive-compulsive disorder, among others. Although DBS is effective at alleviating symptoms related to these diseases and improving the quality of life of these patients, the mechanism of action of DBS is currently not fully understood.

View Article and Find Full Text PDF

Although deep brain stimulation (DBS) is a clinically effective surgical treatment for essential tremor (ET), and its neurophysiological mechanisms are not fully understood. As the motor thalamus is the most popular DBS target for ET, and it is known that the thalamic nucleus plays a key role in relaying information about the external environment to the cerebral cortex, it is important to investigate mechanisms of thalamic DBS in the context of the cerebello-thalamo-cortical neuronal network. To examine this, we measured single-unit neuronal activities in the resting state in M1 during VL thalamic DBS in harmaline-induced tremor rats and analyzed neuronal activity patterns in the thalamo-cortical circuit.

View Article and Find Full Text PDF

Harmaline-induced tremor is one of the most commonly utilized disease models for essential tremor (ET). However, the underlying neural networks involved in harmaline-induced tremor and the degree to which these are a representative model of the pathophysiologic mechanism of ET are incompletely understood. In this study, we evaluated the functional brain network effects induced by systemic injection of harmaline using pharmacological functional magnetic resonance imaging (ph-fMRI) in the swine model.

View Article and Find Full Text PDF

Therapeutic benefits of deep brain stimulation (DBS), a neurosurgical treatment for certain movement disorders and other neurologic conditions, are well documented, but DBS mechanisms remain largely unexplained. DBS is thought to modulate pathological neural activity. However, although astrocytes, the most numerous cell type in the brain, play a significant role in neurotransmission, chemical homeostasis and synaptic plasticity, their role in DBS has not been fully examined.

View Article and Find Full Text PDF

Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied.

View Article and Find Full Text PDF