Three bimetallic Ir(iii)-Pd(ii) complexes [Ir(ppy)(bpm)PdCl](PF) (ppy = 2-phenylpyridine, 1), [Ir(dfppy)(bpm)PdCl](PF) (dfppy = (4,6-difluorophenyl)pyridine, 2), and [Ir(pq)(bpm)PdCl](PF) (pq = 2-phenylquinoline, 3) were synthesized by using 2,2'-bipyrimidine (bpm) as a bridging ligand. The influences of the cyclometalated ligand at the Ir(iii) center on the photophysical and electrochemical properties as well as photocatalytic activity for the Suzuki-Miyaura coupling reaction under mild conditions were evaluated. The results revealed that complex 3 enables dramatically accelerating the Suzuki-Miyaura coupling reaction under visible light irradiation at room temperature, due to the effective absorption of visible light and appropriate locus of the excited chromophore.
View Article and Find Full Text PDFThe optically active Ir(III) complex Λ-[Ir(ppy)(MeCN)](PF) (ppy is 2-phenylpyridine) with a chiral-at-metal was first demonstrated to preferentially react with (R)-configuration sulfoxides 2-(alkylsulfinyl)phenol (HLO-R, R = Me, Et, Pr, and Bn) rather than (S)-configuration sulfoxides under thermodynamic equilibrium due to the hydrogen-bonding interaction and the differences in the steric interference, and thus act as a highly efficient enantioreceptor for resolution of sulfoxide enatiomers. Treatment of Λ-[Ir(ppy)(MeCN)](PF) with 2 equiv of rac-HLO-R offered (S)-HLO-R in yields of 46-47% with 97-99% enantiomeric excess (ee) values and Λ-[Ir(ppy){(S)-LO-R}] complex in yields of 89-93% with 98% diastereomeric excess (de). The (R)-HLO-R chiral sulfoxides were obtained by the acidolysis of Λ-[Ir(ppy){(S)-LO-R}] complexes with trifluoroacetic acid (TFA) in the presence of coordinated solvent MeCN in yields of 45-47% with 98-99% ee values.
View Article and Find Full Text PDFChiral precursors Λ-[Ir(ppy)2(l-pro)] (Λ-L, where ppy is 2-phenylpyridine; pro is proline), Λ-[Ir(ppy)2(MeCN)2](PF6) (Λ-1), Δ-[Ir(ppy)2(d-pro)] (Δ-D), and Δ-[Ir(ppy)2(MeCN)2](PF6) (Δ-1) were synthesized from rac-[(Ir(ppy)2)2Cl2] and l-pro or d-pro by means of the auxiliary ligand strategy with 99% de values. The enantiopure mono complexes Λ/Δ-[Ir(ppy)2(L)](PF6) (L is 2,2'-bipyridine, Λ/Δ-2; L is 2,2'-dipyrimidine (dpm), Λ/Δ-3; L is 2,2'-bibenzimidazole (H2bbim), Λ/Δ-4) with 99% ee values and binuclear complexes ΛΛ/ΔΔ-[(Ir(ppy)2)2(dpm)](PF6)2 (ΛΛ-5 and ΔΔ-5) and ΛΛ/ΔΔ-[(Ir(ppy)2)2(bbim)] (ΛΛ-6 and ΔΔ-6) with 99% de values were synthesized in one step using the corresponding chiral precursors. The absolute configurations at Ir(III) centers of precursor Δ-1, mononuclear Λ-3, and binuclear ΔΔ-6 were confirmed by single-crystal structural analysis and characterized by circular dichroism (CD) spectroscopy.
View Article and Find Full Text PDFThe preparation of chiral 2-(alkylsulfinyl)phenol compounds by enantioselective coordination-oxidation of the thioether ruthenium complexes with a chiral-at-metal strategy has been developed. The enantiomerically pure sulfoxide complexes Δ-[Ru(bpy)2{(R)-LO-R}](PF6) (bpy is 2,2'-bipyridine, HLO-R is 2-(alkylsulfinyl)phenol, R = Me (Δ-1a), Et (Δ-2a), iPr (Δ-3a), Bn (Δ-4a), and Nap (Δ-5a)) and Λ-[Ru(bpy)2{(S)-LO-R}](PF6) (R = Me (Λ-1a), Et (Λ-2a), iPr (Λ-3a), Bn (Λ-4a), and Nap (Λ-5a)) have been synthesized by the reaction of Δ-[Ru(bpy)2(py)2](2+) or Λ-[Ru(bpy)2(py)2](2+) with the prochiral thioether ligands 2-(alkylthio)phenol (HL-R), followed by enantioselective oxidation with m-CPBA as oxidant. The X-ray crystallography was used to verify the stereochemistry of ruthenium complexes and sulfur atoms.
View Article and Find Full Text PDFThe reaction of Δ/Λ-[Ru(bpy)2(py)2](2+) with a prochiral sulfide ligand, and then in situ oxidation, provide the corresponding Δ-[Ru(bpy)2{(R)-OSO-iPr}](+) and Λ-[Ru(bpy)2{(S)-OSO-iPr}](+) (OSO-iPr = 2-isopropylsulfonylbenzonate) enantiomers in a yield of 83% with 98% ee. The chiral sulfoxides were obtained by treatment of the sulfoxide complexes with TFA in a yield of 90% with 88-91% ee.
View Article and Find Full Text PDFA headspace solid-phase microextraction (HS-SPME), in conjunction with gas chromatography-flame ionization detection for use in the determination of six frequently used glycol ethers at the microg/l level is described. A 75 microm Carboxenpolydimethylsiloxane fiber was used to extract the analytes from an aqueous solution. Experimental HS-SPME parameters such as extraction temperature, extraction time, salt concentration and sample volume, were investigated and optimized by orthogonal array experimental designs.
View Article and Find Full Text PDF