Noble metal nanocrystals are used as high sensitivity optoelectronic sensors, such as surface-enhanced Raman scattering, SERS. The sensing performance of metal nanocrystals can be further improved by forming dimer nanojunctions with strong "plasmonic coupling". Since the strength of "plasmonic coupling" is highly sensitive to the sub-nanoscale spacing between plasmonic nanocrystals in nanojunctions, nanojunctions can be used to detect external stimuli that can change the spacing of nanocrystals in the nanojunction and thus change the sensitivity of the Raman scattering spectrum.
View Article and Find Full Text PDFSilver-based nanocrystals have excellent catalytic performance in various reactions, such as the reduction of 4-nitrophenol. The catalytic performance of nanocrystals varies with several parameters, including nanocrystal morphology, composition, and plasmon-induced hot electrons around nanocrystals. Here, highly heterogeneous nanocrystals (Au-Ag and AgS-Ag nanocrystals) fabricated on polymer films a seed-mediated method are used as catalysts for the reduction of 4-nitrophenol, and the effect of the morphology and composition of nanocrystals on the catalytic performance is investigated.
View Article and Find Full Text PDFHere, we fabricated two different heterogeneous nanocomposites, core-shell MOF-AgNC and corner MOF-AgNC, as photocatalysts for CO conversion by generating metal-organic frameworks (MOFs) on silver nanocube templates. These MOF-AgNC nanocomposites showed good CO adsorption features and high CO reduction reactivity. The performances of these MOF-AgNC nanocomposites in CO adsorption and CO reduction reactions can be characterized by in situ Raman spectrum measurement.
View Article and Find Full Text PDFPlasmon resonances of metal nanocrystals resulted from free electrons oscillating around nanocrystals, leading to a strong electromagnetic field around them. Because these oscillating electrons possess higher energy than the original ones, also known as hot electrons, these were widely used as photocatalysts for various reactions. Also, the strength and distribution of the electromagnetic field around the nanocrystals strongly depended on their morphology and excited irradiation, which led to the reaction environment around nanocrystals being controllable.
View Article and Find Full Text PDFOn-chip plasmonic circuitry offers a promising route to meet the ever-increasing requirement for device density and data bandwidth in information processing. As the key building block, electrically-driven nanoscale plasmonic sources such as nanoLEDs, nanolasers, and nanojunctions have attracted intense interest in recent years. Among them, surface plasmon (SP) sources based on inelastic electron tunneling (IET) have been demonstrated as an appealing candidate owing to the ultrafast quantum-mechanical tunneling response and great tunability.
View Article and Find Full Text PDFLayer-by-layer (LbL) synthetic technique has been used to deposit multilayers composed of a wide range of materials including polymers, colloidal particles, and biomolecules. A more complex organization of nanocomponents-within layers (intralayer) and across layers (interlayer)-beyond simple deposition is required for manufacturing next-generation materials and devices. Recently, LbL was used to fabricate multilayer stacked polymer-nanocrystal nanocomposites composed of a stacking sequence of two immiscible polymer thin films.
View Article and Find Full Text PDFPart Part Syst Charact
August 2019
Transvaginal ultrasound is widely used for ovarian cancer screening but has a high false positive rate. Photoacoustic imaging provides additional optical contrast to supplement ultrasound and might be able to improve the accuracy of screening. Here, we report two copper sulfide (CuS) nanoparticles types (nanodisks and triangular nanoprisms) as the photoacoustic contrast agents for imaging ovarian cancer.
View Article and Find Full Text PDFThe strongly enhanced and confined subwavelength optical fields near plasmonic nanoantennas have been extensively studied not only for the fundamental understanding of light-matter interactions at the nanoscale but also for their emerging practical application in enhanced second harmonic generation, improved inelastic electron tunneling, harvesting solar energy, and photocatalysis. However, owing to the deep subwavelength nature of plasmonic field confinement, conventional optical imaging techniques are incapable of characterizing the optical performance of these plasmonic nanoantennas. Here, we demonstrate super-resolution imaging of ∼20 nm optical field confinement by monitoring randomly moving dye molecules near plasmonic nanoantennas.
View Article and Find Full Text PDFNew materials that exhibit strong second-order optical nonlinearities at a desired operational frequency are of paramount importance for nonlinear optics. Giant second-order susceptibility has been obtained in semiconductor quantum wells (QWs). Unfortunately, the limited confining potential in semiconductor QWs causes formidable challenges in scaling such a scheme to the visible/near-infrared (NIR) frequencies for more vital nonlinear-optic applications.
View Article and Find Full Text PDFPlasmonic nanostructures are extensively used building blocks for engineering optical materials and device architectures. Plasmonic nanocomposites (pNCs) are an emerging class of materials that integrate these nanostructures into hierarchical and often multifunctional systems. These pNCs can be highly customizable by modifying both the plasmonic and matrix components, as well as by controlling the nano- to macroscale morphology of the composite as a whole.
View Article and Find Full Text PDFSemiconductor nanocrystals are key materials for achieving localized surface plasmon resonance (LSPR) excitation in the extended spectral ranges beyond visible light, which are critical wavelengths for chemical sensing, infrared detection, and telecommunications. Unlike metal nanoparticles which are already widely exploited in plasmonics, little is known about the near-field behavior of semiconductor nanocrystals. Near-field interactions are expected to vary greatly with nanocrystal carrier density and mobility, in addition to properties such as nanocrystal size, shape, and composition.
View Article and Find Full Text PDFCopper alkanethiolates are organometallic precursors that have been used to form Cu2S nanodisks upon thermal decomposition. Here, we demonstrate that molecular assembly of Cu alkanethiolates into an ordered liquid crystalline mesophase plays an essential role in templating the disk morphology of the solid-state product. To examine this templating effect, we synthesize Cu alkanethiolate precursors with alkane tails of varying chain length and sterics.
View Article and Find Full Text PDFJ Am Chem Soc
November 2011
We demonstrate that anisotropic semiconductor nanocrystals display localized surface plasmon resonances that are dependent on the nanocrystal shape and cover a broad spectral region in the near-IR wavelengths. In-plane and out-of-plane dipolar resonances were observed for colloidal dispersions of Cu(2-x)S nanodisks, and the wavelengths of these resonances are in good agreement with calculations carried out in the electrostatic limit. The wavelength, line shape, and relative intensities of these plasmon bands can be tuned during the synthetic process by controlling the geometric aspect ratio of the disk or using a postsynthetic thermal-processing step to increase the free carrier densities.
View Article and Find Full Text PDFBimetallic nanoparticles (NPs) are known to exhibit enhanced optical and catalytic properties that can be optimized by tailoring NP composition, size, and morphology. Galvanic deposition of a second metal onto a primary metal NP template is a versatile method for fabricating bimetallic NPs using a scalable, solution-based synthesis. We demonstrate that the galvanic displacement reaction pathway can be controlled through appropriate surface modification of the NP template.
View Article and Find Full Text PDF