Publications by authors named "Su-Peng Kou"

Unconventional lattice fermions with high degeneracies that are not Weyl or Dirac fermions have attracted increased attention in recent years. In this paper, we consider pseudospin-1 Maxwell fermions and the (2 + 1)-dimensional parity anomaly, which are not constrained by the fermion doubling theorem. We derive the Hall conductivity of a single Maxwell fermion and explain how each Maxwell fermion has a quantized Hall conductance of/.

View Article and Find Full Text PDF

In sharp contrast to conventional topological superfluids, higher order (order r  >  1) topological superfluids in n dimensions do not host n  -  1 dimensional Majorana boundary states, instead host n  -  r dimensional Majorana excitations. In this paper, we propose Majorana corner modes can emerge in a second order superfluid with s-wave pairing, instead of unconventional pairings such as d-wave and [Formula: see text]-wave pairings in most of previous proposals. There are three key ingredients in this scheme consisting of a topological insulator, an in-plane Zeeman field, and an s-wave pairing.

View Article and Find Full Text PDF

Long-range entanglement is an important aspect of the topological orders, so efficient methods to characterize the long-range entanglement are often needed. In this regard, topological entanglement entropy (TEE) is often used for such a purpose but the experimental observation of TEE in a topological order remains a challenge. Here, we propose a scheme to observe TEE in the topological order by constructing specific minimum entropy states (MESs).

View Article and Find Full Text PDF

In this paper, we present a study on the repulsive Haldane-Hubbard model with spin-rotation symmetry in square lattices by deriving non-linear σ model for magnetic states. It is found that a chiral spin liquid state as the ground state of the correlated system exists in the [Formula: see text] topological spin-density wave proposed by Wu et al (2016 J. Phys.

View Article and Find Full Text PDF

In this paper, based on mean-field approach and random-phase-approximation, we study the magnetic properties of the repulsive Haldane-Hubbard model on a square lattice. We find antiferromagnetic order driven topological spin density waves beyond Landau's symmetry-breaking paradigm, for which the effective low energy physics is determined by Chern-Simons-Hopf gauge field theories with different K matrices.

View Article and Find Full Text PDF

The Hubbard model is one of the most important models in condensed matter physics. In this paper, we developed a theory of ferrimagnetism in the Hubbard model on bipartite lattices with spectral symmetry. By taking three models as examples, we studied the ferrimagnetic orders that emerge from three typical fermionic systems--metal, semi-metal and (Chern) insulator.

View Article and Find Full Text PDF

The spin 1 bilinear-biquadratic model H = ∑(ij)[cosφS(i)·S(j) + sinφ(S(i)·S(j))(2)] on a square lattice in the region 0 < φ < π/4 is studied in a fermion representation with a p-wave pairing Bardeen-Cooper-Schrieffer type of mean-field theory. Our results show there may exist a non-trivial gapped spin liquid with time-reversal symmetry spontaneously breaking. This exotic state manifests its topological nature by forming chiral states at the edges.

View Article and Find Full Text PDF

We propose a theoretical description of the phase diagram and physical properties in A(2)Fe(4)Se(5)-type (A=K, Tl) compounds based on a coexistent local moment and itinerant electron picture. Using neutron scattering and angle-resolved photoemission spectroscopy measurements to fix the general structure of the local moment and itinerant Fermi pockets, we find a superconducting phase with s-wave pairing at the M pockets and an incipient sign-change s wave near the Γ point, which is adjacent to the insulating phases. The uniform susceptibility and resistivity are found to be consistent with the experiment.

View Article and Find Full Text PDF

In this paper, the Hubbard model on a honeycomb lattice is investigated by using an O(3) nonlinear σ model. A possible candidate for a quantum non-magnetic insulator in a narrow parameter region is found near the metal-insulator transition. After studying the magnetic properties of the quantum non-magnetic insulator, anomalous spin dynamics is shown.

View Article and Find Full Text PDF

Quantum computers are predicted to utilize quantum states to process tasks far faster than those of conventional classical computers. In this Letter we show an alternative approach towards building topological quantum computers by tuning the quantum tunneling effect of degenerate quantum states in topological order, instead of braiding anyons. Using a designer Hamiltonian-the Wen-Plaquette model as an example, we study its quantum tunneling effect of the toric codes and show how to control the toric codes to realize topological quantum computation.

View Article and Find Full Text PDF

We show that a topological gauge structure in an effective description of the t-J model gives rise to a global phase diagram of antiferromagnetic and superconducting phases in a weakly doped regime. Dual confinement and deconfinement of holons and spinons play essential roles here, with a quantum critical point at a doping concentration x(c) approximately equal to 0.043.

View Article and Find Full Text PDF