The formation of stabilized radical anions on organic materials in the solid state is an important issue in radical-based fundamental research and various applications. Herein, for the first time, we report on gas-induced ion-free stable radical anion formation (SRAF) of organic semiconducting solids with high gas selectivities through the use of organic field-effect transistor (OFET) gas sensors and electron spin resonance spectroscopy. In contrast to the previously reported SRAF, which requires either anionic analytes in solution and/or cationic substituents on π-electron-deficient aromatic cores, NDI-EWGs consist of an n-type semiconducting naphthalene diimide (NDI) and various electron-withdrawing groups (EWGs) that exhibit non-ion-involved, gas-selective SRAF in the solid state.
View Article and Find Full Text PDFA design strategy is proposed for electron-transporting materials (ETMs) with homochiral asymmetric-shaped groups for highly efficient non-fullerene perovskite solar cells (PSCs). The electron transporting N,N'-bis[(R)-1-phenylethyl]naphthalene-1,4,5,8-tetracarboxylic diimide (NDI-PhE) consists of two asymmetric-shaped chiral (R)-1-phenylethyl (PhE) groups that act as solubilizing groups by reducing molecular symmetry and increasing the free volume. NDI-PhE exhibits excellent film-forming ability with high solubility in various organic solvents [about two times higher solubility than the widely used fullerene-based phenyl-C -butyric acid methyl ester (PCBM) in o-dichlorobenzene].
View Article and Find Full Text PDFOrganic electron-transporting materials (ETMs) with low-temperature solution processability and high electron-transfer/transport characteristics have received significant attention for their use in high-performance perovskite solar cells (PSCs). In contrast to widely investigated fullerene-based organic ETMs for PSCs, only a few types of non-fullerene-based ETMs have been developed. In this Concept article, a representative design concept for non-fullerene ETMs is described for use in normal (n-i-p) and inverted (p-i-n) type PSCs.
View Article and Find Full Text PDF