Publications by authors named "Su-Ji Park"

The emergence of immune-checkpoint inhibitors (ICIs) has revolutionized the field of oncology, providing promising results in various malignancies. However, ICIs can sometimes lead to severe injection reactions, requiring alternative treatment options. In this case report, we introduce a case of a severe infusion reaction induced by atezolizumab.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) aggregates in the brain. Clusterin (CLU), also known as apolipoprotein J, is a potent risk factor associated with AD pathogenesis, in which Aβ aggregation is essentially involved. We observed close colocalization of CLU and Aβ(1-42) (Aβ42) in parenchymal amyloid plaques or vascular amyloid deposits in the brains of human amyloid precursor protein (hAPP)-transgenic Tg2576 mice.

View Article and Find Full Text PDF

Kaempferol, a bioflavonoid present in fruits and vegetables, has a variety of antioxidant and anti-inflammatory capacities, but the functional role of kaempferol in oxidative skin dermal damage has yet to be well studied. In this study, we examine the role of kaempferol during the inflammation and cell death caused by 12-O-tetradecanoylphorbol-13-acetate (TPA) in normal human dermal fibroblasts (NHDF). TPA (5 μM) significantly induced cytotoxicity of NHDF, where a robust increase in the interleukin (IL)-1β mRNA among the various pro-inflammatory cytokines.

View Article and Find Full Text PDF

Understanding the pathways and time scales underlying electrically driven insulator-metal transitions is crucial for uncovering the fundamental limits of device operation. Using stroboscopic electron diffraction, we perform synchronized time-resolved measurements of atomic motions and electronic transport in operating vanadium dioxide (VO) switches. We discover an electrically triggered, isostructural state that forms transiently on microsecond time scales, which is shown by phase-field simulations to be stabilized by local heterogeneities and interfacial interactions between the equilibrium phases.

View Article and Find Full Text PDF

We elucidate the evolution of the entrained air in drop impact on a wide range of liquids, using ultrafast X-ray phase-contrast imaging. We elaborate the retraction mechanism of the entrapped air film in terms of liquid viscosity. We found the criterion for deciding if the entrapped air evolves into single or double bubbles, as determined by competition among inertia, capillarity, and viscosity.

View Article and Find Full Text PDF

Zinc and apolipoprotein E (apoE) are reportedly involved in the pathology of Alzheimer's disease. To investigate the associative interaction among zinc, apoE, and amyloid-β (Aβ) and its role in amyloid pathogenesis, we performed various biochemical and immunoreactive analyses using brain tissues of Tg2576 mice and synthetic Aβ and apoE peptides. On amyloid plaques or in brain lysates of Tg2576 mice, apoE and Aβ immunoreactivities increased after zinc chelation and were restored by its subsequent replacement.

View Article and Find Full Text PDF

Topological quantum materials exhibit fascinating properties, with important applications for dissipationless electronics and fault-tolerant quantum computers. Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors. Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron-ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend.

View Article and Find Full Text PDF

While clusterin is reportedly involved in Alzheimer's disease (AD) pathogenesis, how clusterin interacts with amyloid-β (Aß) to cause Aß neurotoxicity remains unclear in vivo. Using 5×FAD transgenic mice, which develop robust AD pathology and memory deficits when very young, we detected interactions between clusterin and Aß in the mouse brains. The two proteins were concurrently upregulated and bound or colocalized with each other in the same complexes or in amyloid plaques.

View Article and Find Full Text PDF

This study was conducted to evaluate the effect of supplementation with taurine-rich foods on school attitude assessment (SAA) in high school students. A total of 134 subjects were divided into a taurine-rich food supplemented (TS) group (68 subjects) and control group (66 subjects). For the TS group, school dinners supplemented with taurine-rich foods were provided for 5 days and average dietary amount of taurine supplementation was 466.

View Article and Find Full Text PDF

A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods.

View Article and Find Full Text PDF

Titania (TiO2) powder, which is material for photoelectrode in dye-sensitized solar cells (DSSCs), was fabricated by hydrothermal synthesis process at 230 degrees C for 12 hours. The crystal structures of all the synthesized nano-structured TiO2 films exhibited anatase phase. Binder-free pastes were prepared with the change of the amount of ammonia water from 2 μl to 640 μl in order to obtain the printable viscosity.

View Article and Find Full Text PDF

One of the most questionable issues in wetting is the force balance that includes the vertical component of liquid surface tension. On soft solids, the vertical component leads to a microscopic protrusion of the contact line, that is, a 'wetting ridge'. The wetting principle determining the tip geometry of the ridge is at the heart of the issues over the past half century.

View Article and Find Full Text PDF

Numerous cell types have shown a remarkable ability to detect and move along gradients in stiffness of an underlying substrate--a process known as durotaxis. The mechanisms underlying durotaxis are still unresolved, but generally believed to involve active sensing and locomotion. Here, we show that simple liquid droplets also undergo durotaxis.

View Article and Find Full Text PDF

A bubble reaching an air-liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm.

View Article and Find Full Text PDF