Publications by authors named "Su-Hyun Gong"

Guided exciton-polariton modes naturally exist in bare transition metal dichalcogenide (TMDC) layers due to self-hybridization between excitons and photons. However, these guided polariton modes exhibit a limited propagation distance owing to the substantial exciton absorption within the material. Here, we investigated the impact of hexagonal boron nitride (hBN) layers on guided exciton-polariton modes in WS multilayers.

View Article and Find Full Text PDF

With the rapid emergence of artificial intelligence (AI) technology and the exponential growth in data generation, there is an increasing demand for high-performance and highly integratable optical modulators. In this work, we present an ultra-compact exciton-polariton Mach-Zehnder (MZ) modulator based on WS multilayers. The guided exciton-polariton modes arise in an ultrathin WS waveguide due to the strong excitonic resonance.

View Article and Find Full Text PDF

Excitons, electron-hole pairs in semiconductors, can be utilized as information carriers with a spin or valley degree of freedom. However, manipulation of excitons' motion is challenging because of their charge-neutral characteristic and short recombination lifetimes. Here we demonstrate electric-field-driven drift and funneling of charged excitons (i.

View Article and Find Full Text PDF

An ultra-thin transition metal dichalcogenide (TMDC) layer can support guided exciton-polariton modes due to the strong coupling between excitons and photons. Herein, we report the guided mode resonance in an ultra-thin TMDC grating structure. Owing to the strong exciton resonances in TMDCs, a TMDC grating structure shows guided-mode resonance even at a thickness limit of ∼10 nm and is capable of realizing polaritonic dispersion in a monolithic grating structure.

View Article and Find Full Text PDF

The strong excitonic properties of transition metal dichalcogenides (TMD) have led to the successful demonstration of exciton-polaritons (EPs) in various optical cavity structures. Recently, self-hybridized EPs have been discovered in a bare TMD layer, but experimental investigation is still lacking because of their nonradiative nature. Herein, the direct observation of self-hybridized EPs in a bare multilayer WS via the evanescent field coupling technique is reported.

View Article and Find Full Text PDF

Understanding the chiral light-matter interaction offers a new way to control the direction of light. Here, we present an unprecedently long-range transport of valley information of a 2D-layered semiconductor via the directional emission through a dielectric waveguide. In the evanescent near field region of the dielectric waveguide, robust and homogeneous transverse optical spin exists regardless of the size of the waveguide.

View Article and Find Full Text PDF

The transverse nature of light leads to longitudinal optical spin. Here, the unprecedented transverse optical spin of propagating waves and guided modes in a gyroelectric medium is clarified. We identify the propagation modes in a bulk gyroelectric medium and their polarization in terms of optical spin.

View Article and Find Full Text PDF

Valley pseudospin has emerged as a good quantum number to encode information, analogous to spin in spintronics. Two-dimensional transition metal dichalcogenides (2D TMDCs) recently attracted enormous attention for their easy access to the valley pseudospin through valley-dependent optical transitions. Different ways have been reported to read out the valley pseudospin state.

View Article and Find Full Text PDF

We report a hexagonal GaN nanorod-based two-dimensional photonic crystal (PhC) slab for phosphor-conversion white light emitting devices analyzed by three-dimensional finite-difference time-domain simulation; this slab has a broad reflection band at yellow wavelength with low Fabry-Pérot background at normal incidence. For practical use as a wavelength-selective reflector, a buffer layer under the PhC slab is employed to sustain the nanorods in the PhC slab. However, we observed that the buffer layer placed below the slab destroys the broad reflection band due to evanescent coupling of electromagnetic field in the slab and the buffer layer.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent research has shown that exciton polaritons in semiconductor microcavities can condense into a coherent state similar to a Bose-Einstein condensate, allowing scientists to create and manipulate quantum vortices in a superfluid environment.
  • - A nonresonant Laguerre-Gaussian optical beam was used to generate exciton-polariton condensates, successfully transferring the light's orbital angular momentum to the exciton-polariton fluid and producing quantized vortices despite considerable energy loss during pumping.
  • - These vortices are robust and primarily influenced by the light's orbital angular momentum, which allows for effective manipulation of their properties like chirality and topological charge, suggesting potential applications in energy transfer and
View Article and Find Full Text PDF
Article Synopsis
  • The rise of two-dimensional transition metal dichalcogenide materials, like tungsten disulfide (WS), has led to significant advancements in valleytronics, where valley information is harnessed using light.
  • Researchers showcase a method for valley-dependent light coupling using a plasmonic nanowire and WS layers, achieving a high coupling efficiency of 90 ± 1%.
  • This work offers new ways to control and detect valley and spin information with precise optical techniques at the nanoscale, potentially enhancing future technological applications.
View Article and Find Full Text PDF

Emission control of a quantum emitter made of semiconductor materials is of significance in various optical applications. Specifically, the realization of efficient quantum emitters is important because typical semiconductor quantum dots are associated with low extraction efficiency levels due to their high refractive index contrast. Here, we report bright and unidirectional emission from a site-controlled InGaN quantum dot formed on the apex of a silver-coated GaN nanopyramidal structure.

View Article and Find Full Text PDF

White light-emitting diodes (LEDs) are becoming an alternative general light source, with huge energy savings compared to conventional lighting. However, white LEDs using phosphor(s) suffer from unavoidable Stokes energy converting losses, higher manufacturing cost, and reduced thermal stability. Here, we demonstrate electrically driven, phosphor-free, white LEDs based on three-dimensional gallium nitride structures with double concentric truncated hexagonal pyramids.

View Article and Find Full Text PDF

The hybrid nature of exciton polaritons opens up possibilities for developing a new concept nonlinear photonic device (e.g., polariton condensation, switching, and transistor) with great potential for controllability.

View Article and Find Full Text PDF

Confining photons in the smallest possible volume has long been an objective of the nanophotonics community. In this Letter, we propose and demonstrate a three-dimensional (3D) gap-plasmon antenna that enables extreme photon squeezing in a 3D fashion with a modal volume of 1.3 × 10(-7) λ(3) (∼4 × 10 × 10 nm(3)) and an intensity enhancement of 400 000.

View Article and Find Full Text PDF

Laser operation of a GaN vertical cavity surface emitting laser (VCSEL) is demonstrated under optical pumping with a nanoporous distributed Bragg reflector (DBR). High reflectivity, approaching 100%, is obtained due to the high index-contrast of the nanoporous DBR. The VCSEL system exhibits low threshold power density due to the formation of high Q-factor cavity, which shows the potential of nanoporous medium for optical devices.

View Article and Find Full Text PDF

The quantum plasmonics field has emerged and been growing increasingly, including study of single emitter-light coupling using plasmonic system and scalable quantum plasmonic circuit. This offers opportunity for the quantum control of light with compact device footprint. However, coupling of a single emitter to highly localized plasmonic mode with nanoscale precision remains an important challenge.

View Article and Find Full Text PDF
Article Synopsis
  • White light emitting InGaN nanostructures are crucial for solid-state lighting, but affordable methods for their production are needed.* -
  • The study presents a new technique to create high-quality GaN/InGaN core-shell nanostructures using chemical vapor methods, achieving uniform characteristics without patterning.* -
  • These core-shell structures have impressive optical properties, including fast radiative recombination and high internal quantum efficiency, making them suitable for a wide spectrum of visible light.*
View Article and Find Full Text PDF

Future technologies require faster data transfer and processing with lower loss. A photonic diode could be an attractive alternative to the present Si-based electronic diode for rapid optical signal processing and communication. Here, we report highly asymmetric photonic diode behavior with low scattering loss, from tapered core-shell quantum well semiconductor rods that were fabricated to have a large gradient in their bandgap energy along their growth direction.

View Article and Find Full Text PDF

A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits.

View Article and Find Full Text PDF

Anodic aluminum oxide (AAO) films with different pore sizes were prepared to modulate the effective refractive index and birefringence. To investigate the relationship between the refractive index and the pore size of the AAO film, optical constants were obtained using a prism coupler with various lasers. With experimental results, the dispersion curve of alumina itself without pores was extracted using a theoretical anisotropic model.

View Article and Find Full Text PDF