Publications by authors named "Su-Di Chen"

Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM[Formula: see text]X[Formula: see text] (M [Formula: see text] Cd, In, Zn; X [Formula: see text] P, As), distinct from the traditional avenues involving Kondo-Ruderman-Kittel-Kasuya-Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd[Formula: see text]P[Formula: see text]. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance ([Formula: see text]) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle.

View Article and Find Full Text PDF

In the underdoped n-type cuprate NdCeCuO, long-range antiferromagnetic order reconstructs the Fermi surface, resulting in a putative antiferromagnetic metal with small Fermi pockets. Using angle-resolved photoemission spectroscopy, we observe an anomalous energy gap, an order of magnitude smaller than the antiferromagnetic gap, in a wide portion of the underdoped regime and smoothly connecting to the superconducting gap at optimal doping. After considering all the known ordering tendencies in tandem with the phase diagram, we hypothesize that the normal-state gap in the underdoped n-type cuprates originates from Cooper pairing.

View Article and Find Full Text PDF

Microwave impedance microscopy (MIM) is an emerging scanning probe technique for nanoscale complex permittivity mapping and has made significant impacts in diverse fields. To date, the most significant hurdles that limit its widespread use are the requirements of specialized microwave probes and high-precision cancellation circuits. Here, we show that forgoing both elements not only is feasible but also enhances performance.

View Article and Find Full Text PDF

The effect of Lifshitz transition on thermodynamics and superconductivity in hole-doped cuprates has been heavily debated but remains an open question. In particular, an observed peak of electronic specific heat is proposed to originate from fluctuations of a putative quantum critical point (e.g.

View Article and Find Full Text PDF

Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe_{4}. By combining transport, photoemission, diffraction, and x-ray absorption measurements, we observe that the hysteresis loop has a temperature width of more than 400 K, setting a record among crystalline solids.

View Article and Find Full Text PDF

In conventional superconductors, the phase transition into a zero-resistance and perfectly diamagnetic state is accompanied by a jump in the specific heat and the opening of a spectral gap. In the high-transition-temperature (high-T) cuprates, although the transport, magnetic and thermodynamic signatures of T have been known since the 1980s, the spectroscopic singularity associated with the transition remains unknown. Here we resolve this long-standing puzzle with a high-precision angle-resolved photoemission spectroscopy (ARPES) study on overdoped (Bi,Pb)SrCaCuO (Bi2212).

View Article and Find Full Text PDF

The resistance of a conventional insulator diverges as temperature approaches zero. The peculiar low-temperature resistivity saturation in the 4f Kondo insulator (KI) SmB has spurred proposals of a correlation-driven topological Kondo insulator (TKI) with exotic ground states. However, the scarcity of model TKI material families leaves difficulties in disentangling key ingredients from irrelevant details.

View Article and Find Full Text PDF

In normal metals, macroscopic properties are understood using the concept of quasiparticles. In the cuprate high-temperature superconductors, the metallic state above the highest transition temperature is anomalous and is known as the "strange metal." We studied this state using angle-resolved photoemission spectroscopy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1q6im1c4dh6l549obd0qeoijblr1b4cu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once