Publications by authors named "Su Lwin Htike"

A co-substrate model of Candida tropicalis TISTR 5306 cultivated in 10 - 100 g/L xylose and 1 - 10 g/L glucose at the ratio of 10:1 was developed based in part on modified Monod equation. The kinetic parameters include substrate limitation as well as substrate and product inhibitions with inclusion of threshold values. A general good fitting with average RSS, R, and MS values of 162, 0.

View Article and Find Full Text PDF

Cellulosic bioethanol production generally has a higher operating cost due to relatively expensive pretreatment strategies and low efficiency of enzymatic hydrolysis. The production of other high-value chemicals such as xylitol and phenylacetylcarbinol (PAC) is, thus, necessary to offset the cost and promote economic viability. The optimal conditions of diluted sulfuric acid pretreatment under boiling water at 95°C and subsequent enzymatic hydrolysis steps for sugarcane bagasse (SCB), rice straw (RS), and corn cob (CC) were optimized using the response surface methodology via a central composite design to simplify the process on the large-scale production.

View Article and Find Full Text PDF

A study evaluated nine kinetic data and four kinetic parameters related to growth, production of various phytase activities (PE), and released phosphate ion concentration ([Pi]) from five lactic acid bacteria (LAB) strains cultivated in three types of media: phytate (IP6), milling stage rice bran (MsRB), and whitening stage rice bran (WsRB). Score ranking techniques were used, combining these kinetic data and parameters to select the most suitable LAB strain for each medium across three cultivation time periods (24, 48, and 72 h). In the IP6 medium, TISTR 1500 exhibited statistically significant highest ( ≤ 0.

View Article and Find Full Text PDF

Corn, rice, wheat, and sugar are major sources of food calories consumption thus the massive agricultural waste (AW) is generated through agricultural and agro-industrial processing of these raw materials. Biological conversion is one of the most sustainable AW management technologies. The abundant supply and special structural composition of cellulose, hemicellulose, and lignin could provide great potential for waste biological conversion.

View Article and Find Full Text PDF

Phenylacetylcarbinol (PAC) is a precursor for the synthesis of several pharmaceuticals, including ephedrine, pseudoephedrine, and norephedrine. PAC is commonly produced through biotransformation using microbial pyruvate decarboxylase (PDC) in the form of frozen-thawed whole cells. However, the lack of microorganisms capable of high PDC activity is the main factor in the production of PAC.

View Article and Find Full Text PDF