With a simple and conformal metal nanocrystal dipping of synthesized micelles, nonvolatile memory characteristics originating from a metallic cobalt (Co) core nanocrystal (NC) surrounded by a Co-oxide shell are investigated in this study. From transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS), it was confirmed that Co-oxide was made by oxygen plasma for polymer oxidation and that metallic Co wrapped with a Co-oxide shell was made by hydrogen annealing in order to reduce the Co-oxide. Energy band diagrams considering the extent of the coexistent metallic Co/Co-oxide were also analyzed in terms of how they correspond to each program/erase/retention case.
View Article and Find Full Text PDFThe synthesis of poly(methyl methacrylate) (PMMA) exhibiting one fluorescent dye (Texas Red) and one methyl disulfide end group is described. It is shown that the latter end group enabled the exchange of both oleic amine on gold nanoparticles (AuNP) and of oleic acid on CdSe/ZnS quantum dots (QD), allowing for a phase transfer of both types of nanoparticles (NP) from hexane into dimethylformamide due to the solubility provided by the PMMA chains. For AuNP, a fluorescence quenching of the dye was found due to fluorescence resonance energy transfer (FRET) from the dye to the AuNP, while QDs caused a fluorescence enhancement by FRET from the QD to the attached dyes.
View Article and Find Full Text PDF