Extremely water-repellent surfaces with low sliding angle (SA) have been obtained with a facile single-step sol-gel strategy via co-condensation of tetraethoxysilane (TEOS) and hexadecyltrimethoxysilane (HDTMS) in basic media with an efficient self-cleaning property. We investigated the effect of the molar ratio of HDTMS and TEOS on the properties of the modified silica-coated poly(ethylene terephthalate) (PET) film. A high water contact angle (WCA) of 165° and a low SA of 1.
View Article and Find Full Text PDFAccording to reported polymer-based magnetoelectric (ME) laminates, which generate voltage via an external magnetic field, a binder is indispensable for the adhesion between phases. However, if the binder is excluded, the ME response is expected to improve via efficient strain transfer from the magnetostrictive phase to the piezoelectric phase. Nevertheless, an understanding of the binderless state has not yet been addressed in polymer-based ME laminates.
View Article and Find Full Text PDFIn the last decade, magnetoelectric (ME) polymer films have been developed by including zero-dimensional or one-dimensional magnetostrictive fillers in a piezoelectric polymer matrix. Existing reports on ME polymer films reveal that the shape of the magnetostrictive fillers is a critical determinant of the polymeric phase conformation, strain transfer between the piezoelectric and magnetostrictive phases, and dipole alignment in the films. In this study, to investigate the effect of two-dimensional (2D) magnetostrictive fillers on piezoelectric, magnetic, and magnetoelectric responses, 3-2 type ME films were prepared using CoFeO-intercalated graphene oxide (CFO-i-GO) fillers and poly(vinylidene fluoride) (PVDF) polymers.
View Article and Find Full Text PDFIn the last decade, particulate matter (PM) has gradually become a serious public health issue due to its harmful impact on the human body. In this study, we report a novel filtration system for high PM capturing, based on the magnetoelectric (ME) effect that induces an effective surface charge in membrane filters. To elucidate the ME effect on PM capturing, we prepared electrospun poly(vinylidene fluoride)(PVDF)/CoFeO(CFO) membranes and investigated their PM capturing efficiency.
View Article and Find Full Text PDFIn this study, magnetostrictive powders of CoFe₂O₄ (CFO) and Zn-substituted CoFe₂O₄ (CZFO, Zn = 0.1, 0.2) were synthesized in order to decrease the optimal dc magnetic field (), which is required to obtain a reliable magnetoelectric (ME) voltage in a 3-0 type particulate composite system.
View Article and Find Full Text PDFLow-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO epitaxial growth and BaTiO conversion. Through the TiO epitaxial growth on FTO substrate, (001) oriented TiO nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six.
View Article and Find Full Text PDFEnhanced and self-biased magnetoelectric (ME) coupling is demonstrated in a laminate heterostructure comprising 4 μm-thick Pb(Zr,Ti)O (PZT) film deposited on 50 μm-thick flexible nickel (Ni) foil. A unique fabrication approach, combining room temperature deposition of PZT film by granule spray in vacuum (GSV) process and localized thermal treatment of the film by laser radiation, is utilized. This approach addresses the challenges in integrating ceramic films on metal substrates, which is often limited by the interfacial chemical reactions occurring at high processing temperatures.
View Article and Find Full Text PDFOne-dimensional (1D) piezoelectric nanostructures have attracted significant attention for a broad range of applications including optoelectronics, thermoelectrics, electrochemical and electromechanical converters. We demonstrate the synthesis of 1D nanostructures based upon Pb(Zr0.52Ti0.
View Article and Find Full Text PDFMagnetoelectric (ME) composites that simultaneously exhibit ferroelectricity and ferromagnetism have recently gained significant attention as evident by the increasing number of publications. These research activities are direct results of the fact that multiferroic magnetoelectrics offer significant technological promise for multiple devices. Appropriate choice of phases with co-firing capability, magnetostriction and piezoelectric coefficient, such as Ni-PZT and NZFO-PZT, has resulted in fabrication of prototype components that promise transition.
View Article and Find Full Text PDF